
An Efficient and Scalable Authenticated Cloud Storage Scheme

Based on Trapdoor Hash Functions

Santosh Chandrasekhar and Mukesh Singhal

University of California, Merced

{schandrasekhar@ucmerced.edu, msinghal@ucmerced.edu}

Abstract

Storage services are among the primary cloud computing offerings, providing advantages of scale,
cost and availability to its customers. However, studies and past experiences show that large-scale
storage service can be unreliable, and vulnerable to various threats that cause loss and/or corruption
of customer data. Since cloud service providers have an incentive to hide these corruptions/losses to
protect their reputation, explicit mechanisms are necessary to verify the integrity of the stored data. In
this work, we present an authenticated cloud storage system that is designed for services where the data
is populated by multiple sources and retrieved by the clients. The goal is to allow the clients to verify the
authenticity and integrity of the retrieved data in a scalable and efficient way, without requiring implicit
trust on the storage service provider. The proposed mechanism, based on our recently proposed multi-
trapdoor hash functions, utilizes a third-party trustworthy authentication service provider to generate
authentication tags (that are analogous to signatures) for the data stored at the storage service. The
communication and computation overheads associated with authenticating the data retrieved by clients
remain constant regardless of the data size, or the number of sources. The proposed scheme achieves
this by generating tags of individual files and aggregating tags of multiple files (from multiple sources)
using a novel mechanism based on multi-trapdoor hashing scheme. We develop a discrete log-based
instantiation of the scheme and evaluate its security and performance. Our security analysis shows that
forging the individual or aggregate authentication tags is infeasible under the discrete log assumption.
Our performance comparison with other schemes in the literature demonstrates that the proposed scheme
achieves superior efficiency and scalability, with constant cost associated with computing and verifying
the individual and aggregate authentication tags, and constant size of the aggregate authentication tag,
regardless of the number of data files or the number of sources.

1 Introduction

Users of today’s clouds are diverse, ranging from single users to large organizations, utilizing different types
of services at various levels of abstraction. Along with the usual infrastructure, platform, software, and
the subsequent derivative “as-a-service” offerings, clouds also provide a rich array of services, tools and
middleware to clients for controlling, managing, monitoring and maintaining their assets, which include
rented resources, software and other services. This rich array of cloud offerings, along with its benefits of
scale, cost and accessibility, are the key contributing factors to the continued growth of cloud adoption and
utilization. This growth includes data storage, a service that continues to be among the most popular ones,
for purposes of content distribution, data analysis, archiving, among many others. A cloud-based storage
system saves customers the overhead associated with the hardware, software, resources and professionals that
would be necessary for a traditional in-house data storage solution, and instead, offloads these overheads to
the cloud storage service provider (CSSP).

Motivation: Primary research challenges involving cloud-based storage systems concern security and per-
formance (that covers aspects of scalability, availability, latency, and usability). Security plays a key role

1

in adoption of technology, particularly with clouds [7, 16, 35, 46]. Security concerns in clouds stem from
clients relinquishing direct control over its assets (information and system components) to the cloud service
provider leading to risk of potential mismanagement of those assets, and a shared multi-tenant environment
that can cause exposure of client’s data and resources to other consumers. Security threats can originate
both externally and internally. External security threats result from attacks that target exposed interfaces
due to resources, applications and data being hosted on public domains that are accessed/administered over
the Internet, and from increase in system complexity leading to a large attack surface. Internal security
threats can originate from within a client’s organization (current/former employees, affiliates, etc.) utilizing
a cloud service, cloud provider’s organization, as well as from other clients using the service. These threats
can be both malicious and unintentional causing loss and/or corruption of a client’s data. Moreover, cloud
providers have a strong incentive to hide any loss/corruption to protect their reputation, and maintain its
profits [42]. Thus, when a client stores its data with an external, potentially untrusted, CSSP, explicit
mechanisms are necessary to protect client assets from external and internal attacks on its integrity, authen-
ticity, availability, authorization and privacy (or confidentiality). While each of these security concerns are
important and have been addressed in the past, most scenarios, at the very least, require assurances of data
integrity and authenticity [36].

Problem Statement: This paper focusses on the problem of ensuring integrity, authenticity and non-
repudiation of data in cloud-based storage systems in an efficient and scalable, which we collectively term as
lightweight, manner. Primary factors that influence overheads include computation at all entities involved
(client, data source and storage system), bandwidth between client and storage system, and space require-
ments to store authentication information [36]. Efficiency implies that resource consumption (bandwidth,
storage, and processing) remain low for each operation, and scalability implies that this consumption does
not increase with growth in the size of the system, encompassing items like, amount of data or entities
involved.

Existing literature contains several solutions that deal with problems of storage integrity as well as query
integrity [47] for databases that are outsourced. We cover existing research work more extensively later in
the paper. Unfortunately, we find that a large majority of these solutions only consider storage systems
comprising a single source of data and do not scale well when multiple data sources are present. The need
to consider multiple data sources cannot be overlooked, since it is relevant in several real world scenarios.
A well-known example is a data warehouse that integrates data that is generated through an assortment
of activities by several disparate sources. This data is then used by clients to support reporting, analytics,
forecasting, and decision making. Another example is the electronic medical (or health) record systems being
implemented by various US health care providers as part of national health care reform [1]. These systems
comprise of a database of electronic health records of various patients from various healthcare providers.
For instance, the APeX (Advanced Patient-Centered Excellence) system used by the University of California
San Fransisco (UCSF) Medical Center involves 168 clinics, two hospitals and an Orthopaedic institute. The
small number of proposals addressing data integrity in outsourced databases that do provide support for
multiple sources [36, 37, 38], do not scale well. To fill this gap in existing research, our goal is to develop
a lightweight mechanism to ensure the integrity and authenticity of data retrieved by clients over insecure
public networks from a cloud storage system that is not necessarily trusted and is storing data from multiple
sources.

Contributions: We develop a novel mechanism for authentication of outsourced data with support for
multiple sources that achieves (near-) constant communication and computation overheads regardless of the
data size, or the number of sources. The proposed scheme achieves this by generating authentication tags
(that are analogous to signatures) of individual files and aggregating tags of multiple files (from multiple
sources) using a novel mechanism based on the recently proposed paradigm called a multi-trapdoor hashing
scheme [11].

Unlike traditional hash functions, a trapdoor hash function [30] is associated with a public and private
key, also called a hash and trapdoor key, respectively. Using the hash key, any entity can compute a hash of
a given message. Without the knowledge of the trapdoor key, a trapdoor hash function is collision resistant.
However, given the trapdoor key along with the trapdoor hash value, collisions can be computed efficiently.

2

Based on the concept of double-trapdoor hash functions, Chandrasekhar et al. [11] proposed the concept of
multi-trapdoor hash functions, where the hash function is associated with multiple trapdoors, each belonging
to a different entity. Such a trapdoor hash function allows one to compute the hash of a message (or set
of messages) using hash keys belonging to those multiple entities (who own the respective trapdoor keys),
to generate what we call a target trapdoor hash value. Given this, each entity can now compute a collision
with the target hash value using their respective trapdoor keys, and combine their respective collisions to
generate a multi-trapdoor hash collision between the original and a new set of messages.

The proposed scheme exploits properties of multi-trapdoor hash function to generate authentication tags
for individual files and aggregate them for multiple files. Each authentication tag represents the result of a
trapdoor collision between hashes of the file and a common message (for e.g., the sources’ identities) shared
between all data sources. More precisely, the authentication tag of a file comprises of values that, when
used for computing the trapdoor hash of the file, results in a digest that equals the trapdoor hash of the
common message. This collision can only be computed by the source holding the trapdoor key, and thus,
the tag represents a signature on the file. When a query arrives, we combine the tags corresponding to the
files in the query response to generate a multi-trapdoor hash collision between the query response and the
common shared message. The size of aggregate tag – values necessary to compute the multi-trapdoor hash
of the query response – remains constant regardless of the number of files in the response, or the number
of data sources. Verification now involves checking whether the multi-trapdoor hash values of the common
message and the query response match. Once again, the cost associated with computing the multi-trapdoor
hash value of the query response remains constant. This results in a scheme that is highly scalable in terms
of computation and communication overheads regardless of the data size, or the number of sources. In
summary, the contributions of this paper are as follows:

1. Using our recently proposed multi-trapdoor hashing scheme [11] we develop a novel mechanism for
authenticating query response in cloud-based storage systems, where data is populated by multiple
data sources. The scheme allows clients to verify the integrity and authenticity of files returned by an
outsourced database in response to their queries.

2. The proposed scheme requires a small fixed sized authentication tag for each file in the storage, and,
unlike existing schemes in the literature, incurs (near-) constant computation and communication
overheads for verifying the query response regardless of the number of files returned by the query, or
the number of sources.

3. We evaluate the security of the proposed scheme and prove that forging the individual or aggregate
authentication tags is infeasible under the discrete log assumption. We also demonstrate that the
proposed scheme out-performs other existing schemes that provide similar features (in particular,
support for multiple data sources) in terms of scalability, which is among the most important properties
when considering cloud-based storage systems.

Organization: The rest of the paper is organized as follows. We discuss related work in Section 2. In
Section 3 we present background material on trapdoor hash functions [30], Schnorr signatures [40] and a
Schnorr-based multisignature scheme [27, 34] that are used for constructing the proposed authenticated cloud
storage system. In Section 4, we review a technique to allow multiple nodes to find collisions with the hash
of a given message. We then apply this technique in Section 5 to build an efficient and scalable trapdoor
hash-based scheme for authenticating query responses in cloud-based storage systems. In Section 6, we
conduct an analysis of the proposed authenticated cloud storage scheme including its correctness, security
evaluation and the performance of the proposed scheme. Section 7 concludes the paper with pointers to
future research.

2 Related Work

We segment the related work into two areas, namely, authentication in outsourced databases and trapdoor
hash functions.

3

Authentication in Outsourced Databases: Ensuring integrity and authenticity of outsourced storage
has been a well-studied problem, with a wide variety of solutions that include the use of authenticated
skip lists [19, 26, 45], aggregate signatures [36, 37, 38], homomorphic authenticators [2, 28, 41], hash-based
approaches [17, 21], tree-based approaches [18, 31], and several other techniques (for an extensive list of
references, see [2, 29, 32, 44]. While some of these solutions are aimed towards maintaining integrity of
remote archival storage without having to retrieve the data (in other words, providing a guarantee of data
possession, or storage auditing) [2, 19, 28, 41, 48], other solutions are designed to provide verification of query
results in outsourced databases – which is more aligned with our goal. In both cases, the large majority
of proposals assume a single source of data. On the other hand, our goal is to provide lightweight query
integrity and authenticity in cloud storage systems storing data from multiple sources. One solution can be
to extend the existing ideas to support multiple sources. The most promising candidates for such a solution
approach are schemes based on authenticated skip lists and tree-based approaches. The general idea here
is to build a separate data structure for each source with each root value signed by the respective source.
When a query arrives, the query response will not only contain the necessary data structure elements but
also the aggregation of the root signatures, that together can verify the authenticity of the query response.
Unfortunately, the only available technique to generate such an aggregate signature is by Boneh et al. [6]
that, although being efficient in terms of aggregation cost and signature length, incurs verification overhead
that grows linearly with the number of signers.

The proposed work is related to the idea first proposed by Mykletun et al. [36] that uses digital signature
aggregation to provide lightweight authentication of query replies in outsourced databases. The paradigm of
signature aggregation allows combining multiple signatures into a single unified signature, whose verification
simultaneously establishes the validity of all component signatures. Aggregate signatures offer bandwidth
and storage savings, and are usually more efficient to verify compared to verifying all component signatures
individually. In Mykletun et al.’s scheme, the system model comprises of a database service provider, one or
more data sources (or owners), and one or more clients (or queriers). A data source signs each tuple in the
database, and stores the signature along with the tuple at the service provider. When a client query arrives,
the database service provider aggregates the signatures of all tuples in the query response and sends it to the
client. Successful verification of this single aggregate signature convinces the client of the authenticity and
integrity of the query response. While Mykletun et al.’s scheme is able to scale when the system contains a
single data source, when multiple sources are present, the cost of verifying query response increases linearly
with the number of sources [36] due to the use of the pairing-based aggregate signature scheme BAS [6]. The
same cost increase is also observed in schemes by Narasimha et al. [37] and Pang et al. [38] which also use
BAS for signature aggregation. This linear increase in verification cost can result in significant overhead for
clients with limited computation capabilities.

Trapdoor Hash Functions: The concept of a trapdoor hash function was originally derived from the
notion of trapdoor commitments proposed by Brassard et al. [8]; Krawczyk et al. [30] used trapdoor hash
functions (referred to as chameleon hash) to construct a non-interactive non-transferable signature scheme,
called chameleon signatures (closely related to undeniable signatures), under the hash-and-sign paradigm.
Chameleon signature allows a signer to undeniably commit to the contents of a signed document, but does
not allow the recipient of the signature to disclose the signer’s commitment to a third party without the
signer’s consent. The trapdoor hash function employed by Krawczyk et al. suffers from the key exposure
problem that allows anyone with the knowledge of a collision to compute the private trapdoor key. Ateniese
et al. [4] partially addressed this problem by introducing an identity-based trapdoor hashing scheme that
uses a new key pair for each collision computation. This way, a collision only leads to the to the exposure of
a single trapdoor key that was used for computing that particular collision, thus, preventing the exposure
from affecting other collisions. Later Chen et al. [12] and Ateniese et al. [5] proposed full constructions
of trapdoor hash functions without key exposure, and provided several applications of trapdoor hashing.
Following this, several key-exposure free hashing schemes have been proposed, and for an extensive list of
references and recent developments, see [14].

Shamir et al. [43] employed trapdoor hash functions to develop a new paradigm, called hash-sign-switch,
that could be used to convert any signature scheme into an online/offline signature scheme [20]. In on-

4

line/offline signature schemes, the signature generation procedure is split into two phases that are performed
offline (before the message to be signed is known) and online (after the message is known). By shifting
the computational burden to the offline phase, online/offline signatures can achieve very high efficiency for
signing messages during the online phase. In Shamir et al.’s scheme, the values computed in the offline
phase (a trapdoor hash value and its signature) can only be used for a single message in the on-line phase,
as multiple uses of the same offline trapdoor hash value for different online messages leads to the disclosure
of the trapdoor key. To fix this issue, Chen et al. [13], and later Harn et al. [25] presented multiple-collision
trapdoor hashing schemes where revealing multiple collisions of the same hash value doesn’t leak the secret
trapdoor key. We note that among the various key-exposure-free schemes by Ateniese et al. [5], the one
related to twin Nyberg-Rueppel signatures is also a multiple-collision trapdoor hashing scheme – a property
which they later term as strongly unforgeable [3].

Trapdoor hashing schemes also find applications in the development of several novel signature schemes
that include, threshold signatures [15], proxy signatures [10, 33], sanitizable signatures [3], and stream
authentication schemes [9].

3 Background

In this section, we provide a brief description of single- and double- trapdoor hash functions, and a discrete
log (DL) based signature and multisignature scheme which will be used as building blocks to construct the
proposed authenticated cloud storage system.

3.1 Trapdoor Hash Functions

A trapdoor hashing scheme TH consists of the tuple (ParGen, KeyGen, TH, T rapColGen), that are de-
scribed next. ParGen is an algorithm for parameter generation that takes a security parameter 1k as input,
and outputs system public parameters params. KeyGen is a key generation algorithm that takes params

as input, and outputs a trapdoor and hash key pair (TK,HK). TH is a trapdoor hash function that
takes params, HK, a message m, a random element r, as inputs, and outputs the digest of m denoted as
THHK(m, r). TrapColGen is a collision finding algorithm that takes params, TK, message m, random
element r, and an additional message m′ 6= m as inputs, and outputs a collision parameter r′ such that
THHK(m, r) = THHK(m′, r′). Figure 1 shows the computation of a trapdoor hash of a message m to get
a digest h, along with the computation of a collision parameter r′ for a message m′, which, when used for
computing the trapdoor hash of m′, leads to the same digest h.

HK

TH

TK

m h

r

r'TrapColGen
THm'

Figure 1: A trapdoor hash function.

For trapdoor hash function to be practical, computing the digest of a message using TH and colli-
sions using TrapColGen must be achievable in polynomial time. The function TH is said to be part of
a trapdoor hash family T H described by params, where each TH is associated to a hash key HK. Well-
known security notions associated with trapdoor hashing schemes include collision forgery resistance and

5

key-exposure resistance [5, 30, 43]. Collision forgery resistance [30, 43] implies that given system param-
eters, params and hash key, HK, it is computationally infeasible to find a tuple 〈m,m′, r, r′〉 such that
THHK(m, r) = THHK(m′, r′). Key-exposure resistance implies [5] that given system parameters, params

and a tuple 〈m,m′, r, r′, HK〉 such that THHK(m, r) = THHK(m′, r′), it is computationally infeasible to
find the trapdoor key, TK corresponding to HK.

Krawczyk et al. [30] proposed a simple DL-based trapdoor hashing scheme, DL-TH, which was later used by
Shamir et al. [43] in the construction of their online/offline signature scheme. The system public parameters
are params = 〈p, q, α, H〉, where p and q are primes such that q | p − 1, α is an element of order q in Z

∗
p

and H : {0, 1}∗ 7→ Z
∗
q is a cryptographic hash function. The (private) trapdoor key and (public) hash key

pair of an entity is computed as (TK,HK) = (x ∈R Z
∗
q , X = αx mod p). An entity generates a trapdoor

hash of a message m ∈ {0, 1}∗ using the hash key X , by choosing an element r ∈R Z
∗
q and computing the

hash as THX(m, r) = αH(m)Xr mod q1. Given system parameters params, the trapdoor key x, message
m ∈ {0, 1}∗, r ∈ Z

∗
q and an additional message m′(6= m) ∈ {0, 1}∗, an entity finds a collision between m and

m′ by computing a parameter r′ = x−1(H(m)−H(m′)) + r mod q. We now have,

THX(m′, r′) = αH(m′)Xr′

= αH(m′)X(x−1(H(m)−H(m′))+r)

= αH(m′)αH(m)−H(m′)Xr

= αH(m)Xr = THX(m, r)

Given m, r, m′ and r′, such that THX(m, r) = THX(m′, r′), we denote the tuple 〈m, r,X,m′, r′, X〉 as
a trapdoor collision tuple under X , the pair of messages (m,m′) as a trapdoor collision producing message
pair, and describe the operation as generating a trapdoor collision between m and m′, under X .

The DL-TH scheme suffers from the well known key exposure problem [5]. Given a trapdoor collision tuple
〈m, r,X,m′, r′, X〉, any third party can compute the trapdoor key x corresponding to the hash key X as
follows:

x = (m−m′)(r′ − r)
−1

mod q

Intuitively, this scheme exhibits key exposure because extracting the trapdoor key given a collision
involves solving a simple equation with one unknown. To prevent this, we next present the concept of
a double-trapdoor hash function that utilizes multiple trapdoors during collision computation, a well-known
technique by Ateniese et al. [5].

3.2 Double-Trapdoor Hash Functions

A double-trapdoor hash function, as the name suggests, is associated with a pair of hash keys, one long-term
and the other ephemeral (or one-time). Chen et al. [15] were the first to provide a formal definition of a double-
trapdoor hash family. Our description of a double trapdoor hashing scheme is a variation on the definition
by Chen et al. [15], and extends traditional definitions [43] to allow constructions of trapdoor hash functions
that can generate collisions using ephemeral keys. Unlike in Chen et al.’s definition, the proposed definition
uses different ephemeral keys when generating collisions (similar to multiple-collision schemes [25]). Thus,
our description only permits construction of trapdoor hash functions that do not expose any information
that can lead to the computation of additional collisions after revelation of a collision producing message
pair [15].

Definition 1 A double trapdoor hashing scheme, DTH has the following components:

1All exponentiations modulo q are shorthand representations for computing exponentiations modulo p followed by reducing
the result modulo q. Also, note that the trapdoor hash function can act on arbitrarily long messages as message m can
be hashed using a regular collision-resistant hash function before computing its trapdoor hash without affecting any security
properties [30].

6

ParGen: With a security parameter 1k as input, outputs system public parameters params.

KeyGen: With params as input, outputs a long-term trapdoor and hash key pair (TKl, HKl).

EKeyGen: With params as input, outputs a one-time (or ephemeral) trapdoor and hash key pair (TKe, HKe).

TH: With params, HK = (HKl, HKe), a message m, a random element r, as inputs, outputs the hash
THHK(m, r).

TrapColGen: With params, TK = (TKl, TKe), message m, random element r, and an additional message
m′ 6= m as inputs, outputs a collision parameter r′ and HK ′ = (HKl, HK ′

e) such that THHK(m, r) =
THHK′(m′, r′).

Analogous to single-trapdoor hashing schemes, in double-trapdoor hashing schemes, computing the di-
gest of a message using TH and collisions using TrapColGen must be achievable in polynomial time. The
function TH is said to be part of a double-trapdoor hash family T H described by params, where each TH is
associated to a hash key HK = (HKl, HKe). Similar notions for collision and key-exposure resistance also
exist for trapdoor hash functions that use ephemeral (or double) trapdoors [15]. Informally, collision forgery
resistance implies that given system parameters, params and hash key, HK = (HKl, HKe), it is computa-
tionally infeasible to find a trapdoor collision tuple 〈m, r,HK,m′, r′, HK ′〉, where HK ′ = (HKl, HK ′

e) and
THHK(m, r) = THHK′(m′, r′). Key-exposure resistance implies that given system parameters, params and
a trapdoor collision tuple 〈m, r,HK,m′, r′, HK ′〉 such that THHK(m, r) = THHK′(m′, r′), it is computa-
tionally infeasible to find the long-term trapdoor key, TKl corresponding to HKl. We re-visit these notions
in Section 6.2, where we provide their formal definitions. Figure 2 shows the operation of a double trapdoor
trapdoor hash function. The function hashes a message m to get a digest h. During collision computation
with a message m′, the function outputs a collision parameter r′ and an ephemeral hash key HK ′, which,
when used for computing the trapdoor hash of m′, leads to the same digest h.

HK

TH

TK

m h

HK'

r'

r

TrapColGen

THm'

Figure 2: A double-trapdoor hash function. HK = (HKl, HKe) and HK ′ = (HKl, HK ′
e).

We now review the DL-DTH [11] scheme that overcomes the key exposure problem of DL-TH [5]. Similar to
DL-TH, the common system public parameters are params = 〈p, q, α, H, G〉, with the additional cryptographic
hash function G : {0, 1}∗ 7→ Z

∗
q . The long-term trapdoor and hash key pair of an entity is (TKl, HKl) =

(x ∈R Z
∗
q , X = αx ∈ Z

∗
p), and the ephemeral trapdoor and hash key pair of an entity is (TKe, HKe) =

(y ∈R Z
∗
q , Y = αy ∈ Z

∗
p). An entity generates a trapdoor hash of a message m ∈ {0, 1}∗ using the hash key

HK = (X,Y), by choosing an element r ∈R Z
∗
q and computing the hash as THHK(m, r) = αH(m)(XY)r

mod q. Given system parameters params the trapdoor key TK = (x, y), message m ∈ {0, 1}∗, r ∈ Z
∗
q and

an additional message m′(6= m) ∈ {0, 1}∗, an entity computes a collision as follows:

1. Choose k′ ∈R Z
∗
q and compute r′ = αk′

mod q

2. Generate a ephemeral trapdoor key y′ as y′ = r′
−1

(H(m) −H(m′) + (x + y)r) − x mod q, compute
the ephemeral hash key Y ′ = αy′

mod p, and generate the trapdoor hash value THHK′ (m′, r′) =
αH(m′)+(x+y′)r′ mod q, where HK ′ = (X,Y ′).

7

3. Solve for t′ in t′ = k′ − (x+ y′)G(THHK′(m′, r′)||r′) mod q and output 〈t′, r′, HK ′〉.

Here, 〈m, r,HK,m′, r′, HK ′〉 is the trapdoor collision tuple, and 〈t′, r′〉 is the signature on THHK′(m′, r′)
verifiable under XY ′. In Section 6.2, we show that forging a collision in DL-DTH without knowledge of the
long-term trapdoor key is equivalent to the discrete log problem.

3.3 A Discrete Log-based Signature and Multisignature Scheme

We now provide brief description of the well-known Schnorr signature scheme, along with a multisignature
scheme that allows combining the multiple Schnorr signatures on the same message into a single compact
multisignature.

The Schnorr Signature Scheme, DL-Schnorr: ElGamal signature scheme [23] and its variants are DL-
based signature schemes that have been extensively employed in the literature to build authentication pro-
tocols. Popular variants of the ElGamal signature scheme, include the NIST standard DSS [22], and the
provably secure Schnorr variant [40]. A digital signature scheme consists of four algorithms — parameter
generation (ParGen), key generation (KeyGen), signature generation (SigGen) and signature verification
(SigV er). As in DL-TH, ParGen generates the system public parameters params = 〈p, q, α, H〉 and KeyGen
generates the public and private key pair, (SK,PK) = (x,X = αx). The signature generation and verifica-
tion algorithms are as follows:

SigGen: Given a message m, an entity uses its private key SK = x and proceeds as follows:

1. Choose an ephemeral private key k ∈R Z
∗
q and compute the corresponding ephemeral public key

as r = αk mod q.

2. Solve for the signature parameter t in the equation, t ≡ xH(m||r) + k mod q.

3. Output σ = 〈t, r〉 as the resulting signature on message, m

SigV er: To verify a signature σ on m under public key PK = X , an entity proceeds as follows:

1. Parse σ as the tuple 〈t, r〉 and compute h = H(m||r).

2. Compute r′ = αtX−h mod q.

3. Check whether r ≡ r′ mod q. If so, output Valid , else output Invalid .

Schnorr-based Multisignature Scheme: Micali et al. [34] presented a provably secure Schnorr-based
mulitsignature scheme called accountable subgroup multisignatures (ASM). ASM is based on ideas from a
well-known discrete log-based multisignature construction technique first introduced by Harn et al. [24, 27].
Let {E1, E2, . . . , En} denote the set of nodes with (xi, Xi) as the (private, public) key pair of node Ei. Given
common system parameters params = 〈p, q, α, H〉, generation of a multisignature on a common message m
requires multiple-communication rounds among participating nodes (three in case of ASM [34]) and proceeds
as follows:

1. Each node Ei chooses an ephemeral private key ki ∈R Z
∗
q and computes the corresponding ephemeral

public key as ri = αki mod p.

2. All nodes, E1, E2, . . . , En interact with each other to compute a common ephemeral public key r =
∏n

i=1 ri mod q.

3. Each node Ei solves for the signature parameter ti in the equation, ti = ki − xiH(m||r) mod q.

4. All nodes, E1, E2, . . . , En interact with each other to compute t =
∑n

i=1 ti mod q. The multisignature
on m under public keys X1, X2, . . . , Xn is given by σ = 〈t, r〉.

To verify σ on m, an entity first computes X =
∏n

i=1 Xi mod p and computes r′ = αtXH(m||r) mod q.
If r ≡ r′ mod q then σ is a valid multisignature on m under public keys X1, X2, . . . , Xn.

8

4 Multi-trapdoor Hash Functions

The proposed authenticated cloud storage system is built using the recently proposed concept of a multi-
trapdoor hashing scheme that allows multiple nodes to compute a collision between a given trapdoor hash
value and the trapdoor hash of their own respective messages using their trapdoor keys. Table 1 presents
the notations that we will use throughout the rest of the paper. A multi-trapdoor hashing scheme involves
multiple entities that we label as E1, . . . , En each with their individual hash and trapdoor keys. Hash values
are computed using hash keys of all participants on a sequence of messages and individual participants can
compute collisions with a given hash value.

Symbol Interpretation

〈x〉[a,b] 〈xa, xa+1. . ., xb〉

〈x→ x′〉[a,b]\S 〈xa, xa+1. . ., xb〉, where S⊂{a, . . ., b} and ∀i∈S, xi = x′
i. For example, with S= {k, l}, we get

〈x→x′〉[a,b]\{k,l} = 〈xa, . . ., xk−1, x
′
k
, xk+1, . . ., xl−1, x

′
l
, xl+1, . . ., xb〉

〈x, y〉[a,b] 〈xa, ya, xa+1, ya+1, . . ., xb, yb〉

〈x→ x′, y→ y′〉[a,b]\S 〈xa, ya, xa+1, ya+1, . . ., xb, yb〉, where S⊂{a, . . ., b} and ∀i∈S, xi =x′
i, yi = y′i.

For example, with S= {k, l}, we get 〈x→ x′, y→ y′〉[a,b]\{k,l} = 〈xa, ya, . . ., xk−1,

yk−1, x
′
k
, y′

k
, xk+1, yk+1, . . ., xl−1, yl−1, x

′
l
, y′

l
, xl+1, yl+1, . . ., xb, yb〉.

x By appearing in any of the notations above, signifies that all quantities xa, xa+1, . . ., xb are
equal, and so, we can drop the subscripts. For example, if we have 〈x, y〉[a,b], then this denotes
〈xa, y, xa+1, y, . . ., xb, y〉.

Table 1: Notations. We assume a ≤ k ≤ l ≤ b in the descriptions and examples.

Definition 2 A multi-trapdoor hashing scheme µTH with E1, . . . , En as the participating entities, has the
following components:

ParGen: With a security parameter 1k as input, outputs common system public parameters params.

KeyGen: With params as input, for each entity Ei (i ∈ {1, n}), generates its long-term trapdoor and hash
key pair (TKi

l , HKi
l).

EKeyGen: With params and as input, for an entity Ei (i ∈ {1, n}), generates its ephemeral trapdoor and
hash key pair (TKi

e, HKi
e).

TH: With params, tuple of hash keys 〈HK〉[1,n], where each HKi = (HKi
l , HKi

e), and tuple of (message,
random element) pairs 〈m, r〉[1,n] as inputs, outputs the multi-trapdoor hash TH〈HK〉[1,n]

(〈m, r〉[1,n]).

TrapColGen: With params, TKi = (TKi
l , TK

i
e), tuple of (message, random element) pairs 〈m, r〉[1,n],

and an additional message m′
i 6= mi as inputs, outputs a collision parameter r′i along with HK ′

i =

(HKi
l , HKi

e

′
) such that

TH〈HK〉[1,n]
(〈m, r〉[1,n]) = TH〈HK →HK′〉[1,n]\{i}

(〈m→m′, r→ r′〉[1,n]\{i})

We term the process of computing collisions using TrapColGen in the definition above as a multi-trapdoor
collision between the message comprising of the collection 〈m1, . . . ,mi, . . . ,mn〉 and the message comprising
of the collection 〈m1, . . . ,m

′
i, . . . ,mn〉 (or, in other words, a multi-trapdoor collision between 〈m〉[1,n] and

〈m→m′〉[1,n]\{i}). The function TH is part of a multi-trapdoor hash family T H described by params, where
each TH is associated to a hash key tupleHK1, . . . , HKn and each keyHKi represents the pair (HKi

l , HKi
e).

A property of a multi-trapdoor hashing scheme is the ability to combine (or accumulate) collisions that
are computed by multiple entities into a single collision between the original messages and the new set of
messages (knowledge of the trapdoor keys is not necessary when combining collisions). More precisely, given

9

a multi-trapdoor hash value TH〈HK〉[1,n]
(〈m, r〉[1,n]) (where, 〈m, r〉[1,n] contains messages mi and mj), a

multi-trapdoor collision between messages 〈m〉[1,n] and 〈m→m′〉[1,n]\{i} so that TH〈HK〉[1,n]
(〈m, r〉[1,n]) =

TH〈HK →HK′〉[1,n]\{i}
(〈m→m′, r→ r′〉[1,n]\{i}), and another multi-trapdoor collision between messages 〈m〉[1,n]

and 〈m→m′〉[1,n]\{j} so that TH〈HK〉[1,n]
(〈m, r〉[1,n]) = TH〈HK →HK′〉[1,n]\{j}

(〈m→m′, r→ r′〉[1,n]\{j}), the
collisions can be combined to obtain a multi-trapdoor collision between messages 〈m〉[1,n] and 〈m→m′〉[1,n]\{i,j},
so that TH〈HK〉[1,n]

(〈m, r〉[1,n]) = TH〈HK →HK′〉[1,n]\{i,j}
(〈m→m′, r→ r′〉[1,n]\{i,j}). Similar to conventional

trapdoor hash functions, we require that multi-trapdoor hash functions are efficient to compute, and exhibit
resistance to collision forgery and key-exposure. Figure 3 shows the operations of a multi-trapdoor hash
function. The target trapdoor hash value h is computed over messages m1, . . . ,mn. Given a message m′

i,
each entity Ei uses its trapdoor key TKi to compute the collision parameter ri and an ephemeral hash key
HK ′

i, so that the trapdoor hash of m1, . . . ,m
′
i, . . . ,mn matches h. After all entities compute collisions with

their respective messages, we can accumulate them to obtain a collision between m1, . . . ,mn and m′
1, . . . ,m

′
n.

h

HK
n

HK'
1 HK2

...

TK
1

HK'
1

TH

HK
n

HK
1 HK'2

...

TK
2

HK'
2

TH

TrapColGen

m1

m'2

mn

.
..

m'2

TrapColGen

TK
n

HK'
nHK'

n
HK

1 HK2
...

TH m1

m2

m'n

.
..

m'n

...
...

...

...

...

r1
.
..

r'n

r2

r'n

m'1

m'2

m'n

.
..

r'1
.
..

r'n

r'2HK'
n

HK'
1 HK'2

...

TH

TrapColGen

TH

HK
n

HK
1 HK2

...

m1

m2

mn

.
..

m'1

m2

mn

.
..

m'1

m1

m2

mn

.
..

r1
.
..

rn

r2

r'1
.
..

rn

r2

r'1

r'2

r1
.
..

rn

r'2

r1
.
..

rn

r2

Figure 3: A multi-trapdoor hash function. The boxed region shows the accumulation of collisions that
are computed by multiple entities into a single collision between the original messages and the new set of
messages.

We now describe a DL-based multi-trapdoor hashing scheme DL-µTH based on the double-trapdoor hashing
scheme DL-DTH described in Section 3.2. Similar to DL-DTH, the common system parameters are params =
〈p, q, α,H,G〉. Also, as in the DL-DTH scheme, the long-term trapdoor and hash key pair of an entity Ei is
(TKi

l , HKi
l) = (xi ∈R Z

∗
q , Xi = αxi mod p), and the one-time key pair is (TKi

e, HKi
e) = (yi ∈R Z

∗
q , Yi = αyi

mod p). Given params, tuple of hash keys 〈HK〉[1,n], where each HKi = (Xi, Yi), and tuple of (message,
random element) pairs 〈m, r〉[1,n] as inputs, the multi-trapdoor hash is computed as TH〈HK〉[1,n]

(〈m, r〉[1,n]) =

α
∑

n
i=1 H(mi)

∏n

i=1 (XiYi)
ri mod q. With params, TKi = (xi, yi), tuple of (message, random element) pairs

〈m, r〉[1,n], and an additional message m′
i 6= mi as inputs, an entity computes a collision as follows:

1. Choose k′i ∈R Z
∗
q , compute r′i = αk′

i mod q, and interact with remaining entities to compute the
common parameter r′ =

∏n

i=1 r
′
i mod q.

2. Generate an ephemeral trapdoor key y′i by solving y′i = r′i
−1

(H(mi) − H(m′
i) + (xi + yi)ri) − xi

mod q, compute the ephemeral hash key Y ′
i = αy′

i mod p, and generate the trapdoor hash value h′
i =

10

TH〈HK→HK′〉[1,n]\{i}
(〈m→m′, r→ r′〉[1,n]\{i}) = α

∑n
j=1,j 6=i

H(mj)+H(m′
i)
∏n

j=1,j 6=i (XjYj)
rj (XiY

′
i)

r′i mod q,
where HK ′

i = (Xi, Y
′
i).

3. Solve for ti in ti = k′i − (xi + y′i)G(h′
i||r

′) mod q and output 〈ti, r
′
i, HK ′

i〉.

After all entities compute their collisions, we obtain n equalities, each representing a collision between
trapdoor hash of a new message and the trapdoor hash of the original message, as follows

α
∑

n
i=1 H(mi)

∏n

i=1(XiYi)
ri = α

∑
n
i=2 H(mi)+H(m′

1)
∏n

i=2(XiYi)
ri(X1Y

′
1)

r′1

= α
∑n

i=1,i6=2 H(mi)+H(m′
2)
∏n

i=1,i6=2(XiYi)
ri(X2Y

′
2)

r′2

...

= α
∑n−1

i=1 H(mi)+H(m′
n)

∏n−1
i=1 (XiYi)

ri(XnY
′
n)

r′n

We also obtain n signatures 〈t1, r
′
1〉, . . . , 〈tn, r

′
n〉 on h′

1, . . . , h
′
n respectively, with all h′

i’s being equal to
TH〈HK〉[1,n]

(〈m, r〉[1,n]) as seen above.
These individual collisions can now be accumulated together to obtain a multi-trapdoor collision between

the original message 〈m〉[1,n] and the collection of new messages (m′
1, . . . ,m

′
n). For instance, suppose we have

collisions between 〈m〉[1,n] and the hashes of 〈m→m′〉[1,n]\{k} and 〈m→m′〉[1,n]\{l}, individually. These two
collisions can combined into a collision between the trapdoor hash of 〈m〉[1,n] and the trapdoor hash of the
collection of messages 〈m→m′〉[1,n]\{k,l} containing both m′

k and m′
l as follows:

TH〈HK〉[1,n]
(〈m, r〉[1,n]) = α

∑n
i=1 H(mi)

∏n

i=1(XiYi)
ri

= αH(m′
k)+H(m′

l)+
∑n

i=1,i6={k,l} H(mi)(XkY
′
k)

r′k(XlY
′
l)

r′l
∏n

i=1,i6={k,l}(XiYi)
ri

= TH〈HK →HK′〉[1,n]\{k,l}
(〈m→m′, r→ r′〉[1,n]\{k.l})

Continuing this way, we can combine all individual collisions into a single collision between the trapdoor
hash of 〈m〉[1,n] and 〈m′〉[1,n] to get

TH〈HK〉[1,n]
(〈m, r〉[1,n]) = α

∑
n
i=1 H(mi)

∏n

i=1(XiYi)
ri

= α
∑n

i=1 H(m′
i)
∏n

i=1(XiY
′
i)

r′i

= TH〈HK′〉[1,n]
(〈m′, r′〉[1,n])

To combine the signature components, one simply computes t =
∑n

i=1 ti mod q, to get the multisignature
〈t, r′〉 on h verifiable under the public key XY ′ =

∏n

i=1(XiY
′
i) mod p.

5 Authenticated Cloud Storage System

We now present our authenticated cloud storage system with support for multiple data sources. The system
model consists of multiple data sources, a cloud storage service provider (CSSP), an authentication service
provider (ASP) and multiple clients. A data source is an entity that originates the files to be stored on the
cloud. The CSSP maintains a storage cloud that hosts the database of files generated by the various data
sources, and makes the data available to subscribing clients. Such large-scale storage systems are complex
and vulnerable to various threats – both malicious and accidental – that can cause data loss or corruption.
The ASP is a reliable, trusted and independent third-party entity, with no incentive to act maliciously
on its own or by colluding with other entities in the system. The role of the ASP is to ensure that the
data sent to a client in response to the client’s query is authentic with respect to the data sources, and

11

without loss of integrity. We assume secure and authenticated channels between the data sources, ASP and
CSSP, but communication between clients and CSSP need not be secure. The design goals of the proposed
authenticated cloud storage system are to provide lightweight operation and high security. In terms of
operational costs, our aim is to minimize the storage, computation and communication overhead at each
entity, using cryptographic techniques that scale with the number of data sources, and sizes of the database
and query response.

The proposed scheme is divided into three phases, namely, initialization, storage and query. In the
initialization phase, the data sources, CSSP and ASP agree on the common system parameters and compute
the initial cryptographic parameters that will be later used to authenticate the data. During the storage
phase, the data sources populate the database, and collaborate with the ASP to generate the authentication
tag associated to each piece of data and store them at the database. Finally, during the query phase,
the client communicates with the ASP and the CSSP to retrieve the desired data along with the relevant
authentication tags, and verify the data’s authenticity and integrity. We now describe the three phases in
more detail.

Initialization Phase: The initialization phase begins with all entities choosing and agreeing on the common
system public parameters params = 〈p, q, α,G,H〉, where p, q, α, G, and H are as described in Section 3.2
for the DL-DTH scheme. Each data source Ei(0 ≤ i ≤ n) possesses a trapdoor key TKi = (xi, yi), where
xi, yi ∈R Z

∗
q . The corresponding hash key HKi = (Xi, Yi), where Xi = αxi mod p and Yi = αyi mod p, is

published in a publicly available directory. Next, the data sources and ASP perform the following operations:

1. Each Ei chooses ki ∈R Z
∗
q , computes ri = αki mod q, and sends 〈ri, HKi〉 to the ASP.

2. After receiving ri from each data source Ei, the ASP does the following:

(a) Assembles m̄ as some arbitrary, but meaningful, message pertaining to the data sources (e.g.,
their identities), and chooses r̄ ∈R Z

∗
q .

(b) Computes the product r =
∏n

i=1 ri mod q, and broadcasts 〈m̄, r̄, r〉 to all the data sources
E1, . . . , En.

The ASP stores m̄, r̄, and r1, . . . , rn. In the storage phase, the data sources use the tuple 〈m̄, r̄〉 and their
trapdoor keys to compute collisions between the common trapdoor hash value h = TH〈HK〉[1,n]

(〈 m̄, r̄〉[1,n]) =

αnH(m̄)(
∏n

i=1 XiYi)
r̄

mod q, where 〈 m̄, r̄〉[1,n] denotes 〈m̄, r̄, m̄, r̄, . . . , m̄, r̄
︸ ︷︷ ︸

n pairs

〉, and the trapdoor hashes of

their respective data files that they wish to store with the CSSP.

Storage Phase: After receiving 〈m̄, r̄, r〉, a data source Ei interacts with the ASP to generate the authen-
tication tag for its first piece of data mi1 that it wishes to store with the CSSP as follows:

1. Each Ei generates an ephemeral trapdoor key zi1 as zi1 = r−1(H(m̄)−H(mi1)+(xi+yi)r̄)−xi mod q
and computes the ephemeral hash key Zi1 = αzi1 mod p.

2. Next it generates the trapdoor hash value hi1 = TH〈HK →HK 1〉[1,n]\{i}
(〈 m̄→m 1, r̄→ r〉[1,n]\{i}) =

αH(mi1)+(n−1)H(m̄)(XiZi1)
r(
∏n

j=1,j 6=i XjYj)
r̄ mod q, where 〈HK→HK 1〉[1,n]\{i} denotes 〈HK1, . . . ,

HKi−1, HKi1, . . . , HKn〉, HKi1 = (Xi, Zi1), and 〈 m̄ → m 1, r̄ → r〉[1,n]\{i} denotes the tuple
〈m̄, r̄, m̄, r̄, . . .
︸ ︷︷ ︸

i− 1 pairs

,mi1, r, . . . , m̄, r̄
︸ ︷︷ ︸

n − i pairs

〉.

3. Finally, Ei solves for ti1 in ti1 = ki − (xi + zi1)G(hi1||r) mod q and sets ai1 = 〈ti1, Zi1〉 as the
authentication tag for the data file mi1.

12

Notice that the trapdoor hash values h and hi1 are equal, and represent a multi-trapdoor collision between
the messages 〈 m̄〉[1,n] and 〈 m̄→m 1〉[1,n]\{i}. Next, each data source Ei sends the data file mi1 to the CSSP
for storage, and sends the corresponding authentication tag ai1 to the ASP. We assume that given an index i1,
the ASP can identify and retrieve the authentication tag ai1 corresponding to mi1, and the CSSP can retrieve
mi1 corresponding to ai1. This can be easily achieved by embedding some auxiliary indexing information into
mi1 and ai1. To generate the authentication tag for a subsequent data file mi2 from the Ei, the data source
follows Step 1 to compute (zi2, Zi2) so that hi2 = TH〈HK →HK 2〉[1,n]\{i}

(〈 m̄→m 2, r̄→ r〉[1,n]\{i}) – where,
HKi2 = (Xi, Zi2) – equals the common trapdoor hash value h. Since h = hi1 = hi2, Ei need not generate
hi2 in Step 2, and instead, directly generates the signature component ti2 as ti2 = ki − (xi + zi2)G(hi1||r)
mod q. Finally, Ei sets ai2 = 〈ti2, Zi2〉 as the authentication tag for the data file mi2.

The value r used in computing the trapdoor hash collision between h and hi1, hi2, etc., and in the
computation of ti1, ti2, etc., does not change from one data file to the next. Even though, this is a departure
from the conventional technique for generating trapdoor collisions and Schnorr signatures, in Section 6.2 we
prove that this does not effect the security of the scheme. The intuitive reasoning behind maintaining security
despite using a fixed r value is that the trapdoor keys used in computing the collision and in generating the
Schnorr signature change with every message. Thus, the ephemeral trapdoor keys (rather than r) take on
the role of randomizing the collision and signature generation processes.

Query Phase: After all data sources have populated the database at the CSSP, and stored the relevant
authentication tags at the ASP, clients can query and retrieve authenticated data by interacting with the
CSSP and the ASP. When a client wishes to query the cloud storage service, it initiates and establishes
connections with both the CSSP and ASP. The client begins with sending its query to the CSSP. The CSSP
retrieves the data matching the query, sends the indices to the ASP, and the data to the client. The ASP
then retrieves the relevant authentication tags matching the query response, combines them into a single
compact value, and sends the aggregate authentication tag to the client. Finally, the client authenticates
the data using the aggregate authentication tag.

For simplicity, assume the query response consists of the messages 〈m11, . . . ,m1e1〉, 〈m21, . . . ,m2e2〉, . . . ,
〈ml1, . . . ,mlel〉, where ei represents the number of data files from source Ei in the query response, and l ≤ n
represents the number of sources whose files are included in the response. Let e = max1≤i≤l(ei). The ASP
generates the aggregate authentication tag as follows:

1. For each miei , 1 ≤ i ≤ l, retrieve the authentication tags aiei = 〈tiei , Ziei〉.

2. For 1 ≤ i ≤ l and ei < j ≤ e, set mij = miei , Zij = Ziei and tij = tiei .

3. Compute ta =
∑l

i=1(
∑e

j=1 tij) mod q, Za =
∏l

i=1(
∏e

j=1 Zij) mod p, and ra = r(
∏n

i=l+1 ri)
−1

mod q, where r =
∏n

i=1 ri mod q as computed during the initialization phase.

4. Assemble the aggregate authentication tag as a = 〈ta, ra, Za, e, r̄〉.

5. Choose kasp ∈r Z
∗
q , compute rasp = αkasp mod q, and solve for tasp in tasp = kasp − xaspG(a||m̄||rasp)

mod q to obtain σasp = 〈tasp , rasp〉.

6. Send 〈a, σasp , m̄〉 to the client.

After receiving 〈a, σasp , m̄〉 from the ASP and the query response 〈m11, . . . ,m1e1〉, 〈m21, . . . ,m2e2〉, . . . ,
〈ml1, . . . ,mlel〉 from the CSSP, the client verifies the authenticity of the response as follows:

1. Compute r′
asp

= αtaspX
G(a||m̄||rasp)
asp mod q and check whether rasp ≡ r′

asp
mod q. If not, output

Invalid and halt.

2. Compute Xa =
∏l

i=1 Xi mod p, hl = TH〈HK〉[1,l](〈 m̄, r̄〉[1,l]) = αlH(m̄)(
∏l

i=1 XiYi)
r̄

mod q, and

h = TH〈HK〉[1,n]
(〈 m̄, r̄〉[1,n]) = αnH(m̄)(

∏n

i=1 XiYi)
r̄

mod q.

13

3. For 1 ≤ i ≤ l and ei < j ≤ e, set mij = miei and compute hm = TH〈HK′〉[1,l](〈m, r〉[1,l]) =

α
∑

l
i=1(

∑
e
j=1 H(mij))((Xa)

eZa)
r mod q, where mi = 〈mi1, . . . ,mie〉, and HK ′

i = 〈HKi1, . . . , HKie〉
with each HKij = (Xi, Zij).

4. Check whether (hl)
e
≡ hm mod q. If not, output Invalid and halt.

5. Compute r′a = αta((Xa)
eZa)

G(h||r)
mod q, and check whether rea ≡ r′a mod q. If so, output V alid.

By design, the proposed scheme allows any subset of a designated group of data sources (in the afore-
mentioned case, E1, . . . , En) to participate in the scheme. The requirement of explicitly specifying a group
of data sources provides additional security guarantees. Any source that is not in the designated group
cannot participate in the scheme, which avoids attacks where an adversarial source is able to convince other
entities of being a legitimate participant and insert malicious data that is authenticated using the adversarial
source’s key. While such an attack does not allow an adversary to modify data content of other participants,
however, it can lead to future disruption caused by data inserted by the adversary.

6 Analysis of the Authenticated Cloud Storage Scheme

In this section, we analyze the proposed authenticated cloud storage scheme in terms of its correctness,
security and performance.

6.1 Correctness

We now describe an example with three data sources E1, E2, E3 that demonstrates the correctness of the
scheme. Figure 4 shows the initialization and storage phases, and Figure 5 shows the query phase.

Figure 4: Initialization and Storage phases with three sources E1, E2 and E3.

14

After the initialization phase is over each source possesses r, m̄ and r̄. When E1 wishes to store a file,
say m11, it computes a collision between the common trapdoor hash value h = TH〈HK〉[1,3](m̄, r̄〉[1,3]) =

α3H(m̄)(X1Y1X2Y2X3Y3)
r̄ and the trapdoor hash of a message containing m11. In particular, E1 computes

(z11, Z11) so that αH(m̄)(X1Y1)
r̄ = αH(m11)(X1Z11)

r. This gives us the multi-trapdoor collision between the
messages 〈m̄, m̄, m̄〉 and 〈m11, m̄, m̄〉 as follows:

h11 = TH〈HK →HK 1〉[1,3]\{1}(〈 m̄→m 1, r̄→ r〉[1,3]\{1})

= αH(m11)+2H(m̄)(X1Z11)
r(X2Y2X3Y3)

r̄

= αH(m11)+2H(m̄)
(

X1α
(r−1(H(m̄)−H(m11)+(x1+y1)r̄)−x1)

)r

(X2Y2X3Y3)
r̄

= αH(m11)+2H(m̄)
(

Xr
1α

(H(m̄)−H(m11)+(x1+y1)r̄−x1r)
)

(X2Y2X3Y3)
r̄

= α3H(m̄)(X1Y1X2Y2X3Y3)
r̄

= TH〈HK〉[1,3](m̄, r̄〉[1,3])

= h

It is straightforward to show that computing (z12, Z12) and (z13, Z13) as shown in Figure 4, result in the
trapdoor hash values h12 of 〈m12, m̄, m̄〉 and h13 of 〈m13, m̄, m̄〉 also being equal to h, i.e., h = h12 = h13.
Similar results follow for the sources E2 and E3, and their respective files. Also, note that all the signatures
t11, . . . , t33 are generated on the same message, since h11 = h21 = h31.

Figure 5: Query phase in which client’s query generates a response containing messages from E1 and E2.

Following the storage phase, assume that a client queries the CSP whose response contains two files,
〈m11,m12〉, from E1, and one file, 〈m21〉, from E2. The ASP generates the aggregate authentication tag
as a = 〈ta, ra, Za, e, r̄〉, where e = 2, and sends 〈a, σasp , m̄〉 to the client. To verify the authenticity of
the query response, the client first verifies the ASP’s signature σasp on a||m̄ under the public key Xasp .
Next, the client checks whether hm = he

l . Since, α
H(m̄)(X1Y1)

r̄ = αH(m11)(X1Z11)
r = αH(m12)(X1Z12)

r and
αH(m̄)(X2Y2)

r̄ = αH(m21)(X2Z21)
r, we have:

15

hm = α(H(m11)+H(m12)+H(m21)+H(m21))(X2
aZa)

r

= α(H(m11)+H(m12)+H(m21)+H(m21))(X1Z11X1Z12X2Z21X2Z21)
r

= α(H(m̄)+H(m̄)+H(m̄)+H(m̄))(X1Y1X1Y1X2Y2X2Y2)
r̄

=
(

α2H(m̄)(X1Y1X2Y2)
r̄
)2

= h2
l

Finally, the client checks the validity of the multisignature 〈ta, ra〉 on the message h under the public key
X2

aZa. We see that:

r′a = αta((Xa)
2Za)

G(h||r)

= α(t11+t12+t21+t21)((X1X2)
2Z11Z12Z21Z21)

G(h||r)

= r1(X1Z11)
−G(h||r)r1(X1Z12)

−G(h||r)r2(X2Z21)
−G(h||r)r2(X2Z21)

−G(h||r)((X1X2)
2Z11Z12Z21Z21)

G(h||r)

= (r1r2)
2

= r2a

6.2 Security Analysis

The proposed multi-trapdoor hashing scheme DL-µTH is based on the double-trapdoor hashing scheme DL-
DTH. Thus, collision forgery and key exposure resistance of DL-µTH depends on the DL-DTH scheme’s resistance
to the same attacks. The difficulty of forging collisions and key exposure in DL-DTH is based on the difficulty
of solving the well-known discrete logarithm problem in subgroup of Z∗

p. We begin with proving the following
two theorems that establish the security of DL-DTH.

Theorem 1 The proposed trapdoor hashing scheme DL-DTH is collision forgery resistant.

Proof: We prove the forgery resistance property of the proposed trapdoor hashing scheme by showing
that the discrete log problem in subgroup of Z∗

p reduces to collision forgery, thus violating the well known
discrete log assumption.

Assume that there exists a PPT collision forgerF against the proposed trapdoor hashing scheme with non-
negligible advantage. Given a hash key HK = (X,Y) and parameters 〈p, q, α,H,G〉, F runs in polynomial
time and outputs the tuple 〈m, r,m′, r′, HK ′, t′〉, where HK ′ = (X,Y ′), such that m 6= m′, r 6= r′, h =

THHK(m, r) = THHK′(m′, r′), and α(t′)(XY ′)
G(h||r′)

≡ r′ mod q with non-negligible probability. Given
F we can construct a PPT algorithm D that breaks the discrete log problem as follows. D is given a DLP
instance 〈p, q, α,X〉. D needs to find x ∈ Z

∗
q such that X = αx mod p. The hash function G behaves as

a random oracle OG that D simulates. This means that D answers any hash queries to OG by a random
value for each new query [39] (with identical anwers if the same query is asked twice). For instance when F
queries OG with 〈h, r′〉, where h = THHK(m, r) for some m and r, OG returns g if ∃g such that g = G(h||r′).
Otherwise D chooses g ∈R Z

∗
q , sets G(h||r′) = g, stores g in the hash entry for G(h||r′) and returns g to F .

On input 〈p, q, α,X〉, D chooses y ∈R Z
∗
q , computes Y = αy mod p and sets HK = (X,Y). D then

runs an instance of forger F with HK as input, answering any hash queries to OG, until F produces the

collision forgery 〈m, r,m′, r′, HK ′, t′〉, where HK ′ = (X,Y ′), h′ = THHK′(m′, r′) and αt′(XY ′)
G(h′||r′)

≡ r′

mod q. Let g′ be the response D gave when F made the query 〈h′, r′〉 to OG. Using the oracle replay
attack [39], D rewinds F to the point when F makes the query, 〈h′, r′〉 to OG, and gives F a new randomly
chosen value g′′ 6= g′ ∈R Z

∗
q . D continues execution of F , until F produces another collision forgery of the

form 〈m, r,m′, r′, HK ′, t′′〉, where α(t′′)(XY ′)
G(h′||r′)

≡ r′ mod q. Given the two collisions produced by

16

F , we now have r′ ≡ α(t′)(XY ′)
(g′)

≡ α(t′′)(XY ′)
(g′′)

mod p. D now computes sk′ = (t′ − t′′)(g′′ − g′)
−1

mod q, where sk′ = x + y′, and y′ is the discrete log of Y ′. Finally, D computes the discrete log of X as
x = r−1(H(m′)−H(m) + sk′r′)− y mod q.

Theorem 2 The proposed double-trapdoor hashing scheme, DL-DTH, is key exposure resistant.

Proof: Key exposure resistance in DL-DTH implies that given a trapdoor collision tuple 〈m, r,HK,m′, r′,
HK ′〉 such that THHK(m, r) = THHK′(m′, r′), where HK = (X,Y) and HK ′ = (X,Y ′), it is computa-
tionally infeasible to find the long-term trapdoor key, x corresponding to X .

Assume that there exists a PPT algorithm K that succeeds in key exposure against DL-DTH with non-
negligible advantage. Given K we can construct a PPT algorithm D that breaks the discrete log problem. D
is given a DLP instance 〈p, q, α,X〉 and needs to find x ∈ Z

∗
q such that X = αx mod p. D chooses y ∈R Z

∗
q ,

computes Y = αy mod p, and sets HK = (X,Y) with the corresponding TK = (x, y). Next, D chooses
m,m′ ∈R {0, 1}∗ and r ∈R Z

∗
q , and uses the TrapColGen algorithm of DL-DTH to generate a double-trapdoor

collision tuple 〈m, r,HK,m′, r′, HK ′〉, where HK ′ = (X,Y ′). D then runs an instance of forger K with
〈m, r,HK,m′, r′, HK ′〉 as input. When K outputs x, D outputs the same value x as the discrete log of
X . This contradicts the well known discrete log assumption. Thus, the proposed double-trapdoor hashing
scheme DL-DTH is key-exposure free.

The proposed multi-trapdoor hashing scheme DL-µTH uses DL-DTH as the underlying trapdoor hash func-
tion. Given Theorems 1 and 2, corresponding security results of DL-µTH immediately follow. This is because,
forging a collision or key exposure in DL-µTH requires an adversary to be able to do the same in the underlying
DL-DTH scheme, which we have shown to be atleast as hard as breaking the discrete log problem. Thus, we
have the the following theorem.

Theorem 3 The proposed multi-trapdoor hashing scheme DL-µTH is collision forgery and key exposure re-
sistant.

We now show that the proposed authenticated cloud storage system is secure against adversarial attacks
under the discrete log assumption. The security of the proposed scheme relies on the security of its building
blocks, namely, the multi-trapdoor hashing scheme, DL-µTH, the Schnorr signature scheme [40] and the
multisignature scheme by Micali et al. [34].

Theorem 4 The discrete log problem in subgroup of Z∗
p reduces to forging the authentication tag associated

to a single message or a set of messages (from multiple sources).

Proof: We begin with considering the forgery of an authentication tag associated to an individual
message generated by an entity Ei during the storage phase of the scheme. Assume that there exists a PPT
tag forger S against the storage phase of the proposed authenticated cloud storage system. Given system
parameters 〈p, q, α,H,G〉, tuple of hash keys 〈HK〉[1,n] = 〈(X1, Y1), . . . , (Xn, Yn)〉, and a tuple 〈m̄, r̄, r〉 as
inputs, S runs in polynomial time and outputs a forged authentication tag aij = 〈tij , Zij〉 associated to
an arbitrary message mij (chosen by S) on behalf an entity Ei (1 ≤ i ≤ n), such that αH(m̄)(XiYi)

r̄ =

αH(mij)(XiZij)
r
and αtij (XiZij)

G(h||r)
≡ r mod q, where h = αnH(m̄)(

∏n

i=1 XiYi)
r̄
, with non-negligible

probability. Given S we can construct a PPT algorithm D that breaks the discrete log problem as follows.
D is given a DLP instance 〈p, q, α,X〉, and simulates random oracle OG for the hash function G. For
1 ≤ i ≤ n, D chooses xi, yi ∈R Z

∗
q , computes Yi = α−yi mod p, computes Xi = Xxi(Yi)

−1 mod p, and sets
HKi = (Xi, Yi). Next D chooses r̄, r ∈R Z

∗
q , and a random message m̄. D then runs an instance of forger

S with 〈p, q, α,H,G, 〈HK〉[1,n], m̄, r̄, r〉 as inputs, answering any hash queries to OG, until S produces the
forged authentication tag aij = 〈tij , Zij〉. Let g be the response D gave when S made the query 〈h, r〉 to OG.
Using the oracle replay attack [39], D rewinds S to the point when S makes the query, 〈h, r〉 to OG, and
gives S a new randomly chosen value g′ 6= g ∈R Z

∗
q . D continues execution of S, until S produces another

forgery of the form a′ij = 〈t′ij , Zij〉, where αH(m̄)(XiYi)
r̄ = αH(mij)(XiZij)

r
and α(t′ij)(XiZij)

g′

≡ r mod q.

Given the two forged tags produced by S, we now have r ≡ αtij (XiZij)
g
≡ αt′ij (XiZij)

g′

mod p. D now

17

computes sk = (t′ij − tij)(g − g′)
−1

mod q, where sk is the discrete log of XiZij . Finally D computes the

discrete log of X as x = (xir̄)
−1(H(mij)−H(m̄) + (sk)r) mod q.

Now consider the forgery of an aggregate authentication tag associated with messages from entities
E1, . . . , En during the query phase of the scheme. Assume that there exists a PPT aggregate tag forger
A against the query phase of the proposed authenticated cloud storage system. A is given system pa-
rameters 〈p, q, α,H,G〉, tuple of hash keys 〈HK〉[1,n] = 〈(X1, Y1), . . . , (Xn, Yn)〉, and the tuple 〈m̄, r̄, r〉 as
inputs. In addition, A adaptively queries the entities to generate a list of authentic (message, tag) pairs
〈(m11, a11), . . . , (m1e1 , a1e1)〉, 〈(m21, a21), . . . , (m2e2 , a2e2)〉, . . . , 〈(mn1, an1), . . . , (mnen , anen)〉, where ei rep-
resents the number of data files from source Ei, and aij = 〈tij , Zij〉 is the authentication tag of mij generated
by Ei. A runs in polynomial time and outputs a forged aggregate authentication tag a′ = 〈t′a, r

′
a, Z

′
a, r̄〉 along

with a signature σ′
asp

= 〈t′
asp

, r′
asp

〉 corresponding to the messages m′
1, . . . ,m

′
n, where each m′

i is associated
with an entity Ei, and σ′

asp
is a signature on the message a′||m̄ verifiable under the ASP’s public key Xasp

2.
It’s straightforward to show that we can use A to construct a PPT algorithm D that breaks the discrete log
problem since, the forgery by A contains a forged ASM multisignature [34] and a forged Schnorr signature [40]
that are both shown to be at least as hard as the discrete log problem.

6.3 Performance

Table 2 shows the performance evaluation results of the proposed authenticated cloud-based storage system.
For a security level of 2048-bits, the system parameters p and q are 2048-bits and 224-bits, respectively, and
SHA-2 with a 224-bit output is used as the hash functions H and G. Thus, exponents in exponentiation are
224-bits in size.

Operation Exponentiation Modular

multiplica-

tion

Hash Modular

summation

Inversion

Individual tag generation 4 O(n) O(1) O(1) 1

Aggregate tag generation 1 O(q) O(1) O(q) 1

Aggregate tag verifica-
tion

10 O(n) O(q) O(q) −

Table 2: Performance evaluation of authenticated cloud storage system. n—number of data sources, l—number of data sources
whose messages are included in a query response, q—number of messages in a query response.

As we can see from Table 2, the number of exponentiations required for generation of individual tags,
generation of aggregate tags and verification of aggregate tags remain constant regardless of q (the number of
messages in the query response) and l (the number of data sources whose files are included in the response).
Although the number of modular multiplications/summations and hash computations grows linearly with
the query result size and/or the number of sources, these operations are highly efficient to compute, causing
minimal computational overhead even for large values of n, q and l. Note that, in our evaluation, we
ignore the cost of exponentiations by e, the maximum number of messages from a single data source, since
e << ⌊log2(q)⌋ + 1. In contrast, existing schemes that provide support for multiple sources [36, 37, 38] use
aggregate signature scheme BAS by Boneh et al. [6] for generation of individual and aggregate authentication
tags, which require much more expensive l + q + 1 pairing operations for verification of the aggregate tags.
The size of individual and aggregate authentication tags remain (near) constant as well. Assuming a security
level of 2048-bits, an individual authentication tag aij for a file mij requires 284-bytes of storage. Also, the
entire outsourced database requires an additional (84+28n+((⌊log2(m̄)⌋+1)/8))-bytes for storing the values
of r̄, 〈r1, . . . , rn〉, and m̄. Aggregate authentication tags a that are generated by the ASP during the query
phase are a constant 344-bytes long regardless of the query size or number of sources. With the addition

2For simplicity, we assume a forgery on query response that contains a single message from each source. More complex
forgeries are also possible, but without any improvement to the adversary’s advantage.

18

of σasp , the total size of authentication information sent by the ASP to the client is a constant 400-bytes.
In contrast, BAS-based schemes require only 40-bytes for both the individual and aggregate tags. However,
we argue that BAS-based schemes’ use of expensive pairing operations and linear growth in the number
of pairings for verifying aggregate tags, significantly undermine the benefits of smaller tags. Thus, overall,
the proposed scheme achieves superior scalability and efficiency, compared with existing schemes supporting
multiple data sources.

7 Conclusions and Future Work

In this paper, we studied the problem of ensuring integrity and authenticity of data in cloud-based storage
systems. We found that prior solutions to this problem do not scale well when data in the cloud is populated
by multiple sources. To address this issue, we developed a scalable and efficient authenticated cloud storage
system with multiple data sources based on multi-trapdoor hash functions. The proposed scheme allows
clients to verify the integrity and authenticity of query results from a cloud storage system that is not
necessarily trusted and is storing data from multiple sources. The efficiency and scalability is achieved
through properties of multi-trapdoor hashes that allows multiple authentication tags that are associated
to the files in a query result to be aggregated in a single tag. Our performance analysis showed that the
computation cost associated with generating and verifying both the individual and aggregate tags remain
(near) constant regardless of the number of files in a query response or the number of data sources; the
portion of computation cost that increases linearly are associated with trivial operations like multiplication,
hashing, and addition. Also, the size of the aggregate authentication tag remains constant. When compared
to other schemes that support multiple sources, we find that, although the size of individual and aggregate
authentication tags are smaller, the cost of verifying the aggregate authentication tag increases linearly with
the number of sources, which can result in significant drain on client resources. Finally, in our security
analysis, we showed that forging a authentication tag associated to a single file or a set of files is at least as
hard as solving the well-known discrete log problem.

Currently, the proposed scheme only ensures the authenticity and integrity (or, the correctness) of selec-
tion query results. We plan to extend our mechanism to also provide completeness guarantees, which will
allow the client to verify that the cloud returns every file that satisfies the query condition [37]. The mecha-
nism will also be augmented to support different types of queries in addition to selection. Three limitations of
the proposed scheme are (1) all potential data owners must be known, (2) need for multiple communication
rounds between data owners and authentication service provider during storage phase, and (3) need for a
trusted authentication service provider. These limitations stem from the use of the proposed DL-DTH scheme
in the construction of the multi-trapdoor hashing scheme. Our investigations reveal that other existing trap-
door hashing schemes are ill-suited for building multi-trapdoor hash functions as they cause a linear increase
in computation cost during collision accumulation; this, in turn, results in a linear increase in verification
cost of the aggregate authentication tag. We are currently conducting research on the development of new
key exposure-free trapdoor hash functions that are better suited for building multi-trapdoor hash functions.

References

[1] The health information technology for economic and clinical health act. Public Law 111-5, 111th
Congress, Feb. 17 2009. Available from http://www.gpo.gov/fdsys/pkg/PLAW-111publ5/pdf/

PLAW-111publ5.pdf, Accessed Nov 25, 2014.

[2] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Osama Khan, Lea Kissner,
Zachary N. J. Peterson, and Dawn Song. Remote data checking using provable data possession. ACM
Transactions on Information and System Security, 14(1):12, 2011.

[3] Giuseppe Ateniese, Daniel H. Chou, Breno de Medeiros, and Gene Tsudik. Sanitizable signatures.
In Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, editors, Proceedings

19

of ESORICS, 10th European Symposium on Research in Computer Security, Milan, Italy, September
12-14, volume 3679 of LNCS, pages 159–177. Springer, 2005.

[4] Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon hash and applications. In Pro-
ceedings of FC, 8th International Conference on Financial Cryptography, volume 3110 of LNCS, pages
164–180. Springer, 2004.

[5] Giuseppe Ateniese and Breno de Medeiros. On the key exposure problem in chameleon hashes. In
Proceedings of SCN, 4th International Conference on Security in Communication Networks, volume
3352 of LNCS, pages 165–179. Springer, 2004.

[6] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. In Eli Biham, editor, Proceedings of EUROCRYPT: International Conference
on the Theory and Applications of Cryptographic Techniques, volume 2656 of LNCS, pages 416–432.
Springer, 2003.

[7] Vason Bourne. Microsoft SMB hosted IT commentary report 140110, February 2010. Available from
http://download.microsoft.com/download/4/1/C/41C365D5-6E3D-4293-A14F-66F16553D6F1/

Microsoft_SMB_Hosted_IT_Commentary_Report_140110.pdf, Accessed December 4, 2012.

[8] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge. Journal
of Computer and System Sciences, 37(2):156–189, 1988.

[9] Santosh Chandrasekhar, Saikat Chakrabarti, and Mukesh Singhal. A trapdoor hash-based mechanism
for stream authentication. IEEE Transactions on Dependable and Secure Computing, 9(5):699–713,
2012.

[10] Santosh Chandrasekhar, Saikat Chakrabarti, Mukesh Singhal, and Kenneth L. Calvert. Efficient proxy
signatures based on trapdoor hash functions. IET Information Security, Special Issue: Selected papers
on multi-agent and distributed information security, 4(4):322–332, December 2010.

[11] Santosh Chandrasekhar and Mukesh Singhal. Multi-trapdoor hash functions and their applications
in network security. In Proceedings of IEEE-CNS, Second IEEE Conference on Communications and
Network Security, San Francisco, California, San Francisco, California, USA, October 29-31, pages
472–480. IEEE, 2014.

[12] Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. Chameleon hashing without key exposure. In
Kan Zhang and Yuliang Zheng, editors, Proceedings of ISC, Information Security, 7th International
Conference, Palo Alto, CA, USA, September 27-29, volume 3225 of LNCS, pages 87–98. Springer, 2004.

[13] Xiaofeng Chen, Fangguo Zhang, Willy Susilo, and Yi Mu. Efficient generic on-line/off-line signatures
without key exposure. In Jonathan Katz and Moti Yung, editors, Proceedingsw of ACNS, Applied
Cryptography and Network Security, 5th International Conference, Zhuhai, China, June 5-8, volume
4521 of LNCS, pages 18–30. Springer, 2007.

[14] Xiaofeng Chen, Fangguo Zhang, Willy Susilo, Haibo Tian, Jin Li, and Kwangjo Kim. Identity-based
chameleon hash scheme without key exposure. In Ron Steinfeld and Philip Hawkes, editors, Proceedings
of ACISP, Information Security and Privacy - 15th Australasian Conference, Sydney, Australia, July
5-7, volume 6168 of LNCS, pages 200–215. Springer, 2010.

[15] Xiaofeng Chen, Fangguo Zhang, Haibo Tian, Baodian Wei, Willy Susilo, Yi Mu, Hyunrok Lee, and
Kwangjo Kim. Efficient generic on-line/off-line (threshold) signatures without key exposure. Information
Sciences, 178(21):4192–4203, 2008.

20

[16] Dell and Intel. Manage your changing IT needs. A European Report on Servers & Storage for
Small Business, February 2012. Available from http://i.dell.com/sites/doccontent/business/

smb/sb360/en/Documents/17595-Servers-Storage-Report-Feb-2012-PDF-V02-SM-LR-uk.pdf,
Accessed November 25, 2014.

[17] Yves Deswarte, Jean-Jacques Quisquater, and Ayda Säıdane. Remote integrity checking - how to trust
files stored on untrusted servers. In Sushil Jajodia and Leon Strous, editors, Proceedings of IFIP
TC11/WG11.5, Integrity and Internal Control in Information Systems VI, Sixth Working Conference
on Integrity and Internal Control in Information Systems (IICIS), Lausanne, Switzerland, November
13-14, volume 140 of IFIP, pages 1–11. Springer, 2003.

[18] Premkumar T. Devanbu, Michael Gertz, Charles U. Martel, and Stuart G. Stubblebine. Authentic data
publication over the internet. Journal of Computer Security, 11(3):291–314, 2003.

[19] C. Christopher Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia. Dynamic
provable data possession. In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, Proceedings
of CCS, 16th ACM Conference on Computer and Communications Security, Chicago, Illinois, USA,
November 9-13, pages 213–222. ACM, 2009.

[20] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital schemes. In Gilles Brassard,
editor, Proceedings of CRYPTO, 9th Annual International Cryptology Conference, volume 435 of LNCS,
pages 263–275. Springer, 1989.

[21] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto. Demonstrating data possession
and uncheatable data transfer. IACR Cryptology ePrint Archive, 2006:150, 2006. Available from http:

//eprint.iacr.org/2006/150, Accessed November 25, 2014.

[22] FIPS. Digital Signature Standard (DSS). National Institute for Standards and Technology, 186-2:ii +
74, January 2000.

[23] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31(4):469–472, 1985.

[24] Lein Harn. New digital signature scheme based on discrete logarithm. Electronics Letters, 30(5):396–398,
March 1994.

[25] Lein Harn, Wen-Jung Hsin, and Changlu Lin. Efficient on-line/off-line signature schemes based on
multiple-collision trapdoor hash families. The Computer Journal, 53(9):1478–1484, 2010.

[26] Alexander Heitzmann, Bernardo Palazzi, Charalampos Papamanthou, and Roberto Tamassia. Efficient
integrity checking of untrusted network storage. In Yongdae Kim and William Yurcik, editors, Proceed-
ings of StorageSS, 4th ACM Workshop On Storage Security And Survivability, Alexandria, Virginia,
USA, October 27-31, pages 43–54. ACM, 2008.

[27] Patrick Horster, Markus Michels, and Holger Petersen. Meta-Multisignature schemes based on the
discrete logarithm problem. In Proceedings of IFIP/SEC: Eleventh International Conference on Infor-
mation Security, pages 128–141. Chapman and Hall, 1995.

[28] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Peng Ning, Sabrina
De Capitani di Vimercati, and Paul F. Syverson, editors, Proceedings of CCS, 14th ACM Conference
on Computer and Communications Security, Alexandria, Virginia, USA, October 28-31, pages 584–597.
ACM, 2007.

[29] Vishal Kher and Yongdae Kim. Securing distributed storage: challenges, techniques, and systems.
In Vijay Atluri, Pierangela Samarati, William Yurcik, Larry Brumbaugh, and Yuanyuan Zhou, edi-
tors, Proceedings of the StorageSS, 1st International Workshop On Storage Security And Survivability,
Fairfax, Virginia, USA, November 11, pages 9–25. ACM, 2005.

21

[30] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of NDSS, Network and Distributed
System Security Symposium. The Internet Society, 2000.

[31] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dynamic authenticated index
structures for outsourced databases. In Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis,
editors, Proceedings of the ACM SIGMOD, International Conference on Management of Data, Chicago,
Illinois, USA, June 27-29, pages 121–132. ACM, 2006.

[32] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Authenticated index structures
for aggregation queries. ACM Transactions on Information and System Security (TISSEC), 13(4):32,
2010.

[33] Manish Mehta and Lein Harn. Efficient one-time proxy signatures. IEE Proceedings Communications,
152(2):129–133, 2005.

[34] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: extended ab-
stract. In Proceedings of CCS, 8th ACM conference on Computer and Communications Security, pages
245–254. ACM Press, 2001.

[35] Microsoft. Drivers & inhibitors to cloud adoption for small and midsize businesses. Findings of Microsoft
SMB Business in the Cloud 2012 research report conducted in conjunction with Edge Strategies Inc.,
February 2012. Available from http://www.microsoft.com/en-us/news/presskits/telecom/docs/

SMBCloud.pdf, Accessed December 4, 2012.

[36] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and integrity in outsourced
databases. ACM Transactions on Storage, 2(2):107–138, 2006.

[37] Maithili Narasimha and Gene Tsudik. Authentication of outsourced databases using signature aggre-
gation and chaining. In Mong-Li Lee, Kian-Lee Tan, and Vilas Wuwongse, editors, Proceedings of
DASFAA, 11th International Conference on Database Systems for Advanced Applications, Singapore,
April 12-15, volume 3882 of LNCS, pages 420–436. Springer, 2006.

[38] HweeHwa Pang, Jilian Zhang, and Kyriakos Mouratidis. Scalable verification for outsourced dynamic
databases. The Proceedings of the VLDB Endowment, 2(1):802–813, 2009.

[39] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Ueli M. Maurer, editor,
Proceedings of Advances in Cryptology - EUROCRYPT, International Conference on the Theory and
Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, volume 1070 of LNCS, pages
387–398. Springer, 1996.

[40] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–174,
1991.

[41] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef Pieprzyk, editor, Pro-
ceedings of Advances in Cryptology - ASIACRYPT, 14th International Conference on the Theory and
Application of Cryptology and Information Security, Melbourne, Australia, December 7-11, volume 5350
of LNCS, pages 90–107. Springer, 2008.

[42] Mehul A. Shah, Ram Swaminathan, and Mary Baker. Privacy-preserving audit and extraction of digital
contents. Cryptology ePrint Archive, Report 2008/186, 2008. Available from http://eprint.iacr.

org/, Accessed November 25, 2014.

[43] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In Proceedings of CRYPTO,
21st Annual International Cryptology Conference, volume 2139 of LNCS, pages 355–367. Springer, 2001.

22

[44] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical dynamic proofs of retrievability.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, Proceedings of CCS, 20th ACM
SIGSAC Conference on Computer and Communications Security, Berlin, Germany, November 4-8,
pages 325–336. ACM, 2013.

[45] Jieping Wang and Xiaoyong Du. Skip list based authenticated data structure in DAS paradigm. In Pro-
ceedings of GCC, 8th International Conference on Grid and Cooperative Computing, Lanzhou, Gansu,
China, August 27-29, pages 69–75. IEEE Computer Society, 2009.

[46] Weichao Wang, Zhiwei Li, Rodney Owens, and Bharat K. Bhargava. Secure and efficient access to
outsourced data. In Radu Sion and Dawn Song, editors, Proceedings of CCSW, the first ACM Cloud
Computing Security Workshop, Chicago, Illinois, USA, November 13, pages 55–66. ACM, 2009.

[47] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. Efficient query integrity for outsourced dynamic
databases. In Ting Yu, Srdjan Capkun, and Seny Kamara, editors, Proceedings of CCSW, 2012 ACM
Workshop on Cloud computing security, Raleigh, North Carolina, USA, October 19, pages 71–82. ACM,
2012.

[48] Yan Zhu, Gail-Joon Ahn, Hongxin Hu, Stephen S. Yau, Ho G. An, and Changjun Hu. Dynamic audit
services for outsourced storages in clouds. IEEE Transactions on Services Computing, 6(2):227–238,
2013.

23

