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Abstract—Cloud computing paradigm offers an opportunity to 

in-house IT departments to establish their services on the cloud 

with minimum investment, and lower maintenance cost. This 

opportunity includes database services that allow a massive 

amount of data to be stored on the cloud. However, outsourcing 

data to the cloud may expose users’ data to the cloud vendor, or 

the vendors’ partners. Although encryption schemes, such as AES 

can be used against an untrusted cloud vendor, or an adversary, 

those schemes add additional computation overheads. In this 

paper, we proposed a light-weight data privacy schema for cloud 

based databases (CloudPDB) that scrambles data on each selected 

bucket (multiple records, or fields) of a database. The proposed 

schema uses a pre-defined database of a chaos system to store data 

on the cloud that protect data against an adversary inside or 

outside of an untrusted cloud vendor. We implemented the 

proposed schema on a well-known standard database benchmark, 

TPC-H with different query sizes. We ran several queries to assess 

the performance of the proposed schema. The evaluation shows 

that the proposed schema provides a better performance over 

other well-known encryption methods. In addition, we assess the 

security level of the proposed schema. 

Keywords— Cloud Computing; Database; Data Privacy; Data 

Security;  

I. INTRODUCTION 

Cloud computing provides elastic storage resources over the 

Internet that allows users to pay for their resource usage based 

on pay-per-use model. It enables users to scale their storage on-

demand [1]. However, the cloud computing paradigm is a form 

of Internet-based service that requires users to outsource their 

data, and their applications to the cloud vendor. Most of the 

time, cloud vendors are not fully trusted by the users, and are 

vulnerable to users’ data privacy violation by the cloud vendor. 

Users have several options to use the cloud. First, the users 

may employ a hybrid-cloud [2] that allows them to outsource 

sensitive data to their private storage, and uses a public cloud 

for their non-sensitive data. This option may not be a practical 

solution due to the complexity of the system integration [2] and 

network security issues. Another option is to encrypt user data 

before outsourcing it to an untrusted cloud vendor. However, 

most well-known encryption methods, such as AES [8] are 

expensive because they increase computation time due to 

encryption/decryption of data during query processing. The 

third option is light-weight data security methods that secure 

data based on some conditions which are discussed in 

Section II. In this paper, we are interested in this option that 

allows users to protect their outsourced data with minimal 

computation overheads. The final option, is outsourcing data 

without considering users data privacy.  

Several studies [4, 5, 6, and 7] have been conducted to 

secure a database with different encryption schemas. Although 

an encrypted database causes additional computation overheads 

to run queries, it enables users to protect their outsourced data, 

in particular sensitive information. In this paper, we assume that 

users are willing to protect their outsourced database on an 

untrusted cloud vendor. We assume that the vendor must not be 

able to access the database, and users may be able to access the 

database with minimal computation overheads. 

Our primary contributions are as follows: 

• We propose an efficient light-weight schema that 

includes several components and algorithm, to 

securely outsource data to an untrusted cloud; 

• We implement, and assess the performance of the 

proposed schema, and compares the performance of 

the light-weight data privacy method to a well-

known encryption method, AES [8]; 

• We analyze the security level of the proposed 

schema.  

The rest of the paper is organized as follows. The next 

section introduces some background related this study. 

Section III, introduces the proposed schema, and its various 

components. Section IV presents a security analysis of the 

proposed schema. The experimental setup of the 

implementation of the proposed schema, and the experimental 

results are discussed in Section V, and VI, respectively. The 

related work is discussed in Section VII, and finally, Section 

VIII concludes this paper, and presents the future work of this 

study.  

II. BACKGROUND 

In our previous study [3], we proposed a light-weight data 

privacy method (DPM) that scrambles chunks of data based on 

a chaos system. The DPM uses the following equation in a 

chaos system that generates sets of distributed random 

numbers.  

�� : ���� = 
��(1 − ��) (1) 

 

where � ∈ {0,1}  and 
  are two initial parameters of this 

equation, and � is the index of each set of �.  

In another words, �  provides a set of numbers that does not 

allow an adversary who knows ��  to predict the future numbers, 

�� where � > �. The content of each chunk (a set of bits or 

bytes) of an original data (input message) can be scrambled 

based on �th set of scrambled addresses in ��  which relocates 

the content of the original data. ��  generates repeated numbers, 



 

 

and DPM uses an algorithm [3] to remove collision in 

addresses, and to cover all addresses of a given chunk of data. 

The advantage of DPM is its time complexity. On one hand, 

a user scrambles a chunk of data with �(1) time complexity, 

and on the other hand, an adversary needs �(2�) computation 

time to retrieve the original data from scrambled data when he 

does not know the initial parameters, where � is the size of each 

chunk. DPM scramble the content of an original bit to avoid 

adding computation overhead, and it has the following two 

important security parameters. 

The size of n: The size of each chunk, n is important to DPM 

to provide a sufficient level of security. For instance, DPM can 

be secured with � > 120  based on current computational 

capabilities. If an adversary runs an exhaustive search on the 

scrambled data, he needs to perform �(2�� )  computational 

steps to retrieve the original data. In implementation work of 

the proposed schema which is described in Section VI, we 

consider each bit as an input that allows us to increases the size 

of �. If we consider a field of a record as an input, it could be 

small enough to retrieve the original data fast. We can combine 

multiple field(s) of a record as a chunk of the original data, and 

we can consider bits of the chunks as an input of DPM in order 

to increase the size of n. For instance, a Unicode character in 

Microsoft SQL Server has 2 Bytes, and for an adversary to 

perform an exhaustive search over a truly scrambled field (see 

the next parameter) with 20 characters length requires �(2�) 

computation steps, where � = 10 !ℎ#$% ∗ 2 '()*% ∗ 8 ,�)%. 

The number of repeated initial parameters: DPM needs to 

run with different initial parameters for each chunk of data 

(message) in order to be secure. The proof of this claim is given 

in Section IV.  

We can generate different set of � for each original data but 

it adds additional computation overheads. We can precompute 

� offline, and store them on a database in order to eliminate 

online computation overheads. A detail of implementation of 

these parameters is discussed in the next section. 

III. THE PROPOSED SCHEMA 

The proposed schema stores scrambled data with minimal 

computation overheads in the database. The database is 

accessible only by the owner of the database, who has a key. In 

case of database compromise as whole, or access to database by 

authorize or unauthorized users without a key, the data on the 

database cannot be retrieved. The cloud vendors also cannot 

access the database because only the owner has the key that can 

reconstruct the scrambled data.  

The proposed schema for a cloud-based database is 

illustrated in Figure 1. Each submitted query from a user will 

go through the proxy server in order to scramble data prior to 

running the query operation (insert, update or select) on the 

database (SecureDB). The scrambled data is stored in 

SecureDB. The proxy server uses MapDB to access different 

set of �  which is defined in Equation 1. We can remove 

MapDB by adding a � generator function that produces several 

sets of �. The proxy server uses KeyDB to store a user’s keys 

for a record in SecureDB.  

The main components of the schema are as follows. 

SecureDB: This database stores scrambled data. Authorized 

and unauthorized users including cloud vendor administrators 

are not able to retrieve the original data from this database 

without knowing the keys that are stored in KeyDB. Only 

submitted transactions from Proxy Server which has access to 

KeyDB, is able to retrieve the original data. Even if this database 

is compromised on the cloud, an internal and an external 

adversary cannot retrieve the original data. 

KeyDB: This database stores an index to � which is located 

in MapDB, for each record in SecureDB. This database is 

updated with an insert/update operation, and it is used for 

reconstructing a record of SecureDB by providing �  for the 

corresponding record. The KeyDB can be used locally in order 

to protect SecureDB from an untrusted cloud vendor.  

MapDB: This is an optional database that collects a set of 

predefined �  in order to avoid adding runtime computation 

overhead for generating � with different initial parameters. For 

instance, Table I shows a definition of Customer’s table with 5 

fields, fields’ types, and the size of each field (Bytes). If we 

consider the combination of all fields as an input to the 

scramble process, we need 2,272 bits (284 Bytes) to be 

scrambled for this table. The join of all fields as an input 

increases computation time against an adversary to retrieve the 

original data from scrambled data. In this example, MapDB 

stores different shuffle addresses from the first bit to 2,272 by 

defining different initial values of  
 and �  which is discussed 
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i
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Figure 1. The proposed schema 



 

 

previously in Equation 1. The proxy server uses one record of 

MapDB (shuffle addresses) to scramble and insert data to 

SecureDB. Then, the proxy server stores the record number of 

inserted data and its correspondence shuffle addresses from 

MapDB into KeyDB, that allows the proxy server to retrieve 

data later by using this information. MapDB can be used for 

several SecureDBs, on multiple clouds because this database 

can protect each SecureDB against an adversary from each 

cloud.  

Table I. The definition of a customer table 

Customer Key Name Address National Key Phone 

Integer nchar(10) nchar(64) Integer nchar(64) 

4 Bytes 20 Bytes 128 Bytes 4 Bytes 128 Bytes 

MapDB can be updated periodically in an offline mode 

(similar to database indexing) in order to remove online 

computation overheads. For instance, the database can be 

updated with adding sets of � based on the number of used �% 

as a threshold parameter.   

Proxy Server: This server allows a user to retrieve, update, 

or insert data to SecureDB. It runs DPM on each submitted 

user’s query. Each user’s operation, such as Insert, Update or 

Select, needs to be submitted to the Proxy Server. If a new 

record needs to be added to the database, proxy server assigns 

an index of a � to the record, and then, it scrambles the record 

based on the assigned � , and finally the index is stored in 

KeyDB for future record retrieval.   

Algorithm I, shows the insert procedure in the proposed 

schema that uses a user’s key and the input record to insert data 

into SecureDB.  

Algorithm I. Insert procedure 

1:    i = NewKey (Key) 

2:    �� =Map(i) 

3:    NewScrambledRec =-./0(��12)) 

4:    Rec# = Insert(NewScrambledRec) 

5:    UpdateKeyDB(i, Table, Rec#)    

First, the procedure stores an index of � in �, and it stores 

�th set of shuffle addresses from MapDB in ��  (step 2). Then, 

it scrambles the user’s input record (step 3), and it inserts the 

scrambled data into SecureDB (step 4), and stores the record 

number in Rec#. Finally, it updates KeyDB with �  (the 

corresponding �  of the record), the record number, and the 

name of table.  

The proxy server uses the record number, and its 

corresponding � from MapDB to reconstruct a record when it 

needs to retrieve or update a record. 

IV. SECURITY ANALYSIS 

A schema has a perfect secrecy, if it can pass the following 

conditions. 

(i) The adversary cannot learn about two scrambled records, 

$� and $3 when he knows a scrambled data, 4;  

(ii) The chaos system generator has perfect secrecy. 

For the first condition, each record of a table of SecureDB 

in the proposed schema needs to be scrambled with different 

initial parameters, in order to avoid similarity between 

scrambled records as follows. 

∃� ∈ ��  #�6 ∃7 ∈ 8*!2$*9'  | 8;(�� , $�) = 4� (2) 

∃< ∈ �3  #�6 ∃� ∈ 8*!2$*9'  | 8;=�3 , $�> = 43 (3) 

∀�, < ∈ � %2!ℎ )ℎ#) 4� ≠ 43  Aℎ*$* � ≠ < (4) 

where SC is the scramble function, ��  and �3  are two 

different sets of shuffle addresses, and $�  and $�  are two 

different 7th and �th records of SecureDB. 

∀i, 4: PrE8;=��, $�> = 4F =
#$ ∈ Ζ such that SC=��, $�> = 4

|Ζ|   

(5) 

     where $ is a  records in SecureDB.   

In other words, the proposed schema uses different �′% 

which are defined with different initial parameters to prevent an 

adversary from learning about two original records by knowing 

their scrambled data. ∎  

For the second condition, �  must provide a uniform 

distribution of addresses in ��   for all entries of n bits as 

follows: 

�: S → U0,1V  %2!ℎ )ℎ#)  W ��X� = 1
Y∈Z

  

(6) 

      where S = {0,1}�. 

∀ X ∈ S: ��X� = �
|Z|   

(7) 

 

In this case, the generator must produce different addresses 

with a uniform probability. As previously dicussed in 

Section II, the generator provides scrambled addresses in each 

� , which is stored in MapDB. DPM uses a set of  shuffle 

addresses in �  to scramble data. If DPM provides the same 

probability for each scrambled address in �, it must show the 

difference between the original addresses, and the scrambled 

addresses are not the same, and DPM must not show any 

relation between addresses. The Figure 2 illustrates a statistical 

model of the first 100 differences between the original 

addresses and the scrambled addresses in Equation 1 with the 

initial parameters of � = 0.999, 
 = 3.684 for the length of 

921 bits (��. In this figure, X-axis represents the address of the 

original bit and Y-axis represents the difference between the 

original address and the final address in the scrambled bits. The 

result shows that DPM scrambles data with a uniform 

distribution with different differences that does not allow an 

adversary to find a patern between scrambled addresses. ∎  

In addition, more security analysis have been conducted 

against DPM which is discussed in [3]. 

As shown in Figure 2, there is no pattern between scrambled 

addresses that allows an adversary to predict the addresses. For 



 

 

instance, if an adversary knows the first bit moves to 13th bit 

when it is scrambled, still he cannot predict that the second bit 

moves to 48th address, or 3rd bit moves to 180th bit. 

 

Figure 2. The difference between the original address and the 

scrambled address        

V. EXPERIMENTAL SETUP 

We conducted an experiment based on the proposed 

schema. We used TPC-H [9] which is a standard database 

benchmark with the scale of 1 GB. We ran different queries on 

Customer table. Each submitted query went through the proxy 

server that ran DPM and AES encryption separately in order to 

compare the performance of both methods on the proposed 

schema. We use ADO.Net [10] at client side to retrieve and bind 

data from the database. DPM and AES encryption were 

implemented as a class [10] and written in C#.Net version 4.5, 

and executed on a PC with CPU Intel Core i7 with 8 GB RAM.  

VI. EXPERIMENTAL RESULTS 

Figures 3 and 4 show the experimental results for the 

performance of the security methods (AES and DPM) on the 

proposed schema, and Figure 5 shows the data binding latency 

for different range of queries’ responses. 

In Figure 3, X-axis represents the number of the fields which 

were requested by a user’s query, and Y-axis represents the total 

response time (millisecond) of AES encryption, and DPM on 

the proposed schema. Figure 3.a shows the total response time 

for 22 queries with a small query range from 9 fields to 9,000 

fields with the increase rate of 450 fields for each next query. 

Figure 3.b shows the total response time for 9 queries with a 

larger query range from 9 fields to 81,000 fields with the 

increase rate of 9,000 fields for the next query. As shown in 

these figures, DPM provides superior performance over AES 

encryption. In particular, the response time difference between 

AES and DPM increases for the larger queries. Figure 4 shows 

the response time difference between AES and DPM for the 

query range of 9 fields to 81,000 fields. In this figure, X-axis 

represents the number of requested fields for a given query, and 

Y-axis represents the performance difference between AES and 

DPM. For instance, as shown in this figure, DPM saves 2,909 

milliseconds (~3 seconds) computation time for a database 

management system (DBMS) over AES for a query with a 

request of 54,000 fields. 

In another evaluation, we considered data binding latency 

which assesses the response time of data binding (retrieving 

data from the query’s results to the client objects). Figure 5 

shows a comparison of data binding latency with different 

range of queries. In this figure, the client’s objects need 

additional computation to fetch data that causes an additional 

computation overheads for the first query. The results show that 

DPM not only provides better performance on computation 

time as described in Figure 3, it also provides an efficient 

computation time for data binding.   

In addition, some studies on databases, such as CryptDB [4] 

show that queries can be executed over encrypted database 

  
(a)  (b) 

Figure 3. A comparison of the performance of the proposed schema between AES encryption and DPM 

 

 

Figure 4. The response time difference between AES and DPM 
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without decryption. Our proposed method in this study can be 

used in CryptDB in order to reduce AES encryption overheads. 

VII. RELATED WORKS 

To the best of our knowledge, early a limited number of 

studies have been conducted on data privacy for cloud-based 

databases. Most of the studies consider encryption methods, or 

role-based data access methods on DBMS side, but any database 

security method that runs on a server side cannot protect users’ 

data privacy.  

In an early study, Denning at al. [5] proposed a theoretical 

multilevel database security which provides the basic idea of 

role-based access (RBAC) control in database. Jonscher 

et al. [6] focus on the security of individual queries which 

cannot be implemented for all queries. Osborn et al. [6] 

developed an integration of systems where access control is 

represented by role graphs. The Osborn’s security system needs 

several computation overheads that includes collecting the role 

of each user, the relation of roles based on a graph, the 

integration of the graphs, and an algorithm that needs to be run 

on all transactions. In addition, a graph-based algorithm needs 

heavy computation, which is not practical for large databases. 

One of the popular recent study is by Popa’s et al. CryptDB [4] 

which considers users’ data privacy, but the database is 

implemented based on RSA and AES encryption. CryptDB uses 

a proxy server to encrypt or decrypt each user’s query. Database 

likes CryptDB can be extended by using DPM in order to 

remove additional computation overheads of AES.  

VIII. CONCLUSION AND FUTURE WORKS 

Users are facing several challenges when they must 

outsource their data to a cloud computing system. First 

challenge in cloud computing is data privacy because any entity 

from the cloud vendor’s side can violate users’ data privacy. 

Second challenge is data security because cloud computing is a 

form of the Internet-based services that need users to access 

their data through an untrusted and public network. A cloud-

based database can be compromised by authorized cloud 

vendor users, or unauthorized users. In this paper, we 

introduced a schema that consists of several components for 

cloud-based databases that protect users’ data privacy. In the 

case of a compromised database, the data can be only accessible 

to users who have the key. Although the schema can be 

implemented by any encryption method, it uses a light-weight 

data privacy method (DPM) that allows users to efficiently 

protect each record inserted into the database. We conducted 

several experiments to evaluate the performance of the 

proposed schema while using DPM and AES encryption. The 

experimental results show that the proposed schema provides 

efficient response when DPM is employed. In addition, we 

analyze the security of DPM and the level of users’ data 

protection.  

As a future work for this study, we will extend the schema 

with a zero knowledge paradigm that allows users to run queries 

on scrambled data without reconstructing data from database. It 

will remove additional overheads on the database management 

system, and it will allow users to protect their data privacy 

efficiently.  
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Figure 5. A comparison of data binding latency between AES encryption and DPM 
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