
A Light-Weight Permutation based Method for Data

Privacy in Mobile Cloud Computing
Mehdi Bahrami1 and Mukesh Singhal2

Cloud Lab

University of California, Merced, USA
1IEEE Senior Member, MBahrami@UCMerced.edu

2 IEEE Fellow, MSinghal@UCMerced.edu

Abstract—Cloud computing paradigm provides virtual IT

infrastructures with a set of resources that are shared with multi-

tenant users. Data Privacy is one of the major challenges when

users outsource their data to a cloud computing system. Privacy

can be violated by the cloud vendor, vendor’s authorized users,

other cloud users, unauthorized users, or external malicious

entities. Encryption is one of the solutions to protect and maintain

privacy of cloud-stored data. However, encryption methods are

complex and expensive for mobile devices. In this paper, we

propose a new light-weight method for mobile clients to store data

on one or multiple clouds by using pseudo-random permutation

based on chaos systems. The proposed method can be used in the

client mobile devices to store data in the cloud(s) without using

cloud computing resources for encryption to maintain user’s

privacy. We consider JPEG image format as a case study to

present and evaluate the proposed method. Our experimental

results show that the proposed method achieve superior

performance compared to over encryption methods, such as AES

and encryption on JPEG encoders while protecting the mobile

user data privacy. We review major security attack scenarios

against the proposed method that shows the level of security.

Keywords— Mobile Cloud Computing; Privacy; Permutation;

Data storage; JPEG encryption; Chaos System;

I. INTRODUCTION

Cloud computing paradigm refers to a set of virtual

machines (VM) that provide computing and storage services

through the Internet [1, 2]. Cloud computing uses virtualization

technology to provide VMs on the top of distributed computing

systems. Cloud computing provides several advantages over

traditional in-house IT [3], such as on-demand services, pay-

per-use basis and elastic resources which have rapidly made

cloud computing a popular technology in different fields, such

as IT business, mobile computing systems and health

systems [4, 5]. Huang [6] defines Mobile Cloud Computing

(MCC) is rooted from mobile computing and cloud computing

paradigm that allows mobile users offload their data and

process data on cloud computing. MCC provides a big data

storage for mobile users with a lower cost and more ease of use.

As of today, some popular MCC cloud vendors for storage

service, such as Google and Dropbox, provide a free standard

storage service with 2GByte and 15GByte capacity,

respectively1.

1 Recorded on November 13, 2014 from https://drive.google.com and

https://www.dropbox.com

MCC provides an online massive storage for mobile users,

but it aggravates the user data privacy issues because users have

to trust third-parties (cloud vendors and their partners). For

instance, in a recent study, Landau [7] reports some challenges

toward privacy issues when users trust cloud vendors, and the

vendor shares data with a third-party or other unauthorized

users could have access to these data. In another study, Kumar

et al. [8] suggest that not all MCC applications can save energy

on mobile devices by offloading data. Finally, in an earlier

study on cloud computing, Ristenpart et al. [9] show a VM can

be a vulnerable component when users use cloud shared

resources.

These examples of challenges in MCC show a mobile user

requires an encryption method to protect their data privacy. One

of encryption methods that can be considered as a secure

method is Advanced Encryption Standard (AES) [10-12].

However, mobile devices have limited resources, such as

limited power energy, low speed CPU and small capacity of

RAM, and it is impossible to use AES encryption method for

each file when offload/download is required for each file.

Another solution for this challenge is light-weight security

methods that provide a balance between maintaining energy

efficiency and security. A light-weight security method is based

on simple operations, such as permutation, rather than using

expensive operations, such as secret key or public-key

encryptions,

In this paper, we propose a light-weight encryption method

for mobile devices, such as smart phones, that uses permutation

operation to protect data privacy. We investigate one of the

popular image file formats as a case study, JPEG file formats

because it is most world’s widely used by smart phones for

capturing pictures. We show that the proposed light-weight

method provides a secure data privacy model based on chaos

systems for JPEG file format in mobile devices. In addition, we

evaluate the performance of the proposed method against other

encryption methods, such as AES, and encryption on JPEG

encoders, such as pixel and color encryptions. We investigate

several attack scenarios against the proposed method.

The rest of the paper is organized as follows: in Section II,

we briefly review background materials for this study. In

Section III, we present the proposed method and its

requirements. In Section IV, we implement the proposed

method and present its experimental results. We also present a

statistical security model of the proposed method to show the

level of the security. In Section V, we investigate different

scenario attacks against the proposed method. In Section VI, we

review a comparison between the proposed method and existing

methods. Finally, in Section VII, we conclude the proposed

method and its evaluations.

II. BACKGROUND

In the proposed method, we use JPEG file format as a case

study. In this section, we briefly review the background of

JPEG file format and its encoder/decoder requirements.

Each JPEG file has a header file that defines metadata, such

as the canvas of a JPEG file with a specific dimension (width

and height), resolution, camera information, GPS information,

and compression information.

Each JPEG file (including the header and the content)

consists of several segments and each segments beginning with

a marker. A raw data of a JPEG file includes several

markers [13]. For example, each JPEG file begins with

“0xFF0xD8” marker that represents this binary is a type to

image and it allows an image viewer application to decode the

binary file and show the image. Each marker begins with

‘0xFF’. Table 1 describes some important markers.

We use these markers in our proposed method to retrieve

different segments of a JPEG files.

A JPEG image encoder uses a lossy form of compression

which is based on the discrete cosine transform (DCT)

method [13] to compress an image. A sequence byte of raw

JPEG image file contains a multiple chunk of Minimum

Codded Unit (MCU) [13]. Each MCU block stores 4*4 pixels

of an image.

TABLE I. JPEG FILE FORMAT

Short

Name

The description of marker Bytes

SOI Start Of Image 0xFF, 0xD8

SOF0 Start Of Frame (Baseline DCT) 0xFF, 0xC0

SOF1 Extended sequential DCT 0xFF, 0xC1

SOF2 Start Of Frame (Progressive DCT) 0xFF, 0xC2

DHT Define Huffman Table(s) 0xFF, 0xC4

DQT Define Quantization Table(s) 0xFF, 0xDB

DRI Define Restart Interval 0xFF, 0xDD

SOS Start Of Scan 0xFF, 0xDA

EOI End Of Image 0xFF, 0xD9

III. THE PROPOSED METHOD

In this section, we present the proposed method to protect

the privacy of data on MCC. As described in Section I, since

mobile devices have limited resources, we have to provide a

method with minimum overhead to protect data privacy that

runs on a mobile device to store and retrieve image files on

MCC. In this paper, we consider JPEG files as a case study

because this format of photography by smart phones is popular

at this time.

We assume the following requirements for the proposed

method:

• The privacy model must satisfy a balance between

computation overheads and maintaining the security.

• Unlike default MCC offloading methods that submit

original files to MCC for encryption, the proposed method

can be ran on mobile devices to provide data privacy, and

then, the protected result will be stored on MCC.

The proposed method splits files into multiple files and uses

a pseudo-random permutation to scramble chunks in each split

file. The proposed method reads a JPEG file as a binary file

rather than using a JPEG encoder/decoder to protect each pixel

or the color of each pixel.

In this method, we have two phases to split files into

multiple files and to recombine the files as follows:

• Disassembling of an image that splits an image file

into multiple binary files, divide the original file into: (i)

one file that contains the header of the original file, and (ii)

multiple files that contain the content of the original file.

The content of each split file consists of multiple chunks of

original file. Chunks distribute through multiple files based

on a Pattern, chunks in each file randomly scramble by

using the chaos system. The output of this phase (split files)

will be stored in MCC(s).

• Assembly of split files that recombine all split files to

reorganize the original file. In this phase the following

steps will be proceed: (i) read all scramble files from

MCC(s); (ii) using the chaos system random arrays (which

are used at the first phase) to reorder the chunks in each

split file; and (iii) use the Pattern to reorganize the original

files.

A. Disassembly Phase

We assume the proposed method requires to disassemble a

series of images at the same time. The method divides each

original file (�����) into: (i) the header of the original file

(���	�
�), where � is the sequence number of original file in

the file series that requires to be disassembled; (ii) the content

of file that is divided into several chunks (�ℎ
���,�) where � is

the sequence number of the chunks of the original content file.

We divide the original JPEG file into header and the content

because the header of the original file carries some important

privacy information. This division also provides a complex

method for recombining split files because it removes important

JPEG markers from the original image file.

A split file is defined as follows:

����� = ���	�
� + (� �ℎ
���,�

������

���
) (1.)

where ���� represents the maximum number of chunks in

����� and is defined as follows:

���� = !�"��
#
$$�
 − �!�"��&

(2.)

 where !�"�� represents the size of ����� (Byte), #
$$�

represents the size of chunks (Byte), and �!�"�� represent the

size of the header of the original ����� (Byte).

Figure 1, illustrates a general view of the proposed method

that allows a mobile device to split an original JPEG file into

header file and three multiple files. The split files is submitted

to two MCCs. A user can configure his/her application to set:

(i) the number of split files, (ii) the size of chunks, and (iii) the

cloud user account(s) information to upload files on MCC(s).

We use the JPEG markers to split the header of the original

file from the content and to find important JPEG markers. If

someone has an access to split files to assemble different files

without accessing to the header, or if the person creates a new

header for a JPEG file, still he/she cannot simply retrieve the

file. For example, Figure 2 shows two pictures (a) and (b), with

the same size and the same resolution that took by a smart

phone. The last right frame (c) shows the result of assembling

the header of the first file and the content of the second file. As

shown in this figure, only the size and the resolution can be

retrieved and still the assembler cannot retrieve the content of

the image. To protect an image from a person who attempt to

assemble a part of image by assembling files, first, we use a

pattern to distribute chunks of the image to different files. The

pattern can be defined as an input by a user to indicate, how to

distribute a sequence of bytes in a split file. Second, we use

chaos theory to randomly distribute each chunk in each split

file.

The proposed method uses two steps to disassemble an

original JPEG file to a number of chunks, and to scramble

randomly each chunk in each split file as follows:

1) Pattern

The proposed method divides each file into ���� chunks

(binary codes) and it distributes chunks to multiple split files in

different order as will be discussed in the next phase. At this

phase, the method use pattern that aims to distribute chunks to

multiple split files. A pattern can be defined as a key by a user

or it can be selected randomly as a predefined method. A user

can define different patterns to provide different strategy for

distribution. For example, Figure 3 shows two different patterns

for disassembling a JPEG file. In this figure, the original file

includes a header, and nine chunks of content. In '�((�
�), the

proposed method reads two consecutive chunks from the

original file and stores each chunk in one of two files. The first

chunk stores in �����,* and the second chunk stores in �����,+.

At the end of reading !-

�� ����� , �����,* contains

{#� , #+, #/, #0} and �����,+ contains {#* , #2, #3 , #4}. In Figure

3, '�((�
�5 shows another pattern to store chunks. In this

pattern, each four consecutive chunks of original file store in

two files. The first and the forth chunks store in ����*,* ; the

second and the third chunks store in ����*,+ . At the end of

reading !-

�� ����* , ����*,* contains{#�, #2, #/, #4 , #6} and

����*,+ contains {#*, #+ , #3, #0}.

If someone has an access to all contents, still he/she cannot

assemble files because he/she needs an access to the pattern as

a key to assemble split files.

2) Scrambling

We use the pseudo-random permutation (PRP) [14] with

chaos [15] to scramble chunks in each split file. PRP uses chaos

system which is defined as follows:

'78� = 9'7(1 − ';) (3.)

where ' ∈ {0,1} and 9 is a parameter of this equation.

Cloud Vendor 1

Cloud Vendor 2

Mobile Device

Original Image File

C
ip

h
e

r
Im

a
g

e
 (

C
h

u
n

k
 3

)

Cipher Header (Chunk 1)

C
ip

h
e

r
Im

a
g

e
 (

C
h

u
n

k
 3

)
C

ip
h

e
r

Im
a

g
e

 (
C

h
u

n
k

 2
)

C
h

u
n

k
 1

C
h

u
n

k
 3

C
h

u
n

k
 4

C
h

u
n

k
 2

Fig. 1. A general view of the proposed Method

(a) Source File #1 (b) Source File #2 (c)Header of file #1 with the content of file #2

Fig. 2. Split the header of files and subsitute header of file #1 with file #2

In the classic problem of the chaos system if selected 9 is to be

selected between 3.569945 ≤ 9 ≤ 4, ' can provide a complex

chaos model.

Figure 4, shows 300 iterations of a chaos behavior that

describes in Equation (2) when 9 = 3.684

The proposed method uses the following set to provide a

non-convergent, non-periodic pseudo random numbers:

{'7}7�FG (4.)

where H = ���� by an initial value of 'F = 0.9999

The proposed method uses the following equation to find the

location of �ℎ
��7 in a split file:

'-I7 = '7 ∗ ���� (5.)

where '-I7 represents the position of �ℎ
��7in each file.

Reading and writing a JPEG file as a binary adds more

complexity to retrieve the image by unauthorized users. For

example, let’s assume that the original file has two consecutive

bytes (i.e., ‘FFD8’ that indicates start of an image). First, we

split these two consecutive bytes into two chunks (i.e., ‘FF’ and

‘D8’). Second, distribute chunks in different location in a

file (i.e, at 0 position and 2047 position); then a JPEG decoder

cannot retrieve this file because the decoder cannot find JPEG

makers. In this case, the JPEG decoder or an operating system

cannot understand this binary file is a type of JPEG format.

Fig. 4. Chaos behavior of {'7}7�F+FF

The best option for selecting the buffer is: when

Buffer �-	 2 = 1 that splits two consecutive bytes into two

chunks.

In the case of a collision between '-I7 and '-IQ in

Equation 5, we develop a framework to find a new address. We

use the following equations (6-11) to relocate a �ℎ
��� from

'-I7 to '-IQ in a file. In these equations {RS���} represents

positions that are not used in {'7}.

'-IQ = RS����
T$(� = max) ⇒ ∃k ∈ max[{RS���7}\

]ℎ�
� � < �

(6.)

'-IQ = RS���_
T$(� = min) ⇒ ∃n ∈ min[{RS���_}\

]ℎ�
� � > �

(7.)

'-IQ = RS���c
T$(� ≠ ���) ∧ ∃o ∈ min[{RS���c}\

where o < k)

⇒ ∃n ∈ min[{RS���_}\]ℎ�
� - < �

(8.)

'-IQ = RS���i
T$(� ≠ min)∧ ∄p ∈ minlmRS���ino

]ℎ�
� p < �

⇒ ∃p ∈ minlmRS���ino]ℎ�
� p > �

(9.)

'-IQ = RS���q
T$(� ≠ max) ∧ ∃q ∈ maxlmRS���qno

where q > k)

⇒ ∃q ∈ maxlmRS���qno where q > k

(10.)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

Iteration

s t

 !-

�� �����

Header

#� #* #+

#2 #/ #3

#0 #4 #6

'�((�
�)

#� #�8�

�����,* �����,+

�����,�

Header

�����,*

#� #+ #/

#0 #6

�����,+

#* #2 #3

#4

 !-

�� ����*

Header

#� #* #+

#2 #/ #3

#0 #4 #6

'�((�
�5

#� #�8�

����*,* ����*,+

#�8* #�8+

����*,* ����*,*

����*,�

Header

����*,*

#� #2 #/

#4 #6

����*,+

#* #+ #3

#0

Fig. 3. Two different patterns to store chunks in three files

'-IQ = RS���u
T$(� ≠ max)∧ ∄p ∈ max[{RS���u}\

]ℎ�
�
 > �

⇒ ∃r ∈ max[{RS���u}\]ℎ�
�
 < �

(11.)

The procedure (Equations 6-11) basically extend the upper

bound collisions and the lower bound collisions to upper and

lower available addresses, respectively. If '-I7v� < '-I7

then, the procedure finds an upper level available position.

If '-I7v� > '-I7 then, the procedure find a lower level

available position. Some exceptions are listed as follows: (i) k

is the maximum address number: the procedure finds a

maximum position of l where k>l; (ii) k is the minimum

address number: the procedure finds a minimum position of l

where k<l; (iii) there is no any available upper bound position:

the procedure finds the maximum number of l where k<l;

(iv) there is no any available lower bound position: the

procedure finds the minimum number of l where k>l.

Figure 5, shows the result of equations (6-11) when 9 =
3.684 and 'F = 0.9999.

B. Assembly a file

At the first step, the method reads each chunk from each

split file based on selected pattern in Section II.A.1, and then

the proposed method uses the chaos model in Section II.A.2 to

relocate each chunk to the original location of JPEG file. At this

phase the proposed method retrieves the address of each chunk

by one the following procedure: (i) use an array of PRP

numbers which is used in assembling phase; (ii) uses 9 and

'Fto build the array of PRP numbers. The array can be defined

by finding each '7 and its relocation ('Q), if there is a collision

between '7 and 'Q .

IV. EVALUATION OF THE PROPOSED METHOD

One of the approaches to evaluate the proposed method is

implementation that represents experimental results, such as the

response time in a load and performance testing. Another

approach is statistical model that describes a deviation between

the original and the output. This section presents these two

approaches to evaluate the proposed method.

A. Implementation

We use the proposed method to disassemble and store 21

JPEG files with different sizes that were taken from a smart

phone. We compare the result of assembly phase against

encryption methods and disassembly phase against decryption

method.

1) Experimental Setup

In this experiment, we used 21 pictures with different

qualities that were taken by a Samsung Galaxy III smart phone.

The total size of our dataset was 24.9 Mbyte. We select different

size of files to benchmark the proposed method with different

input rates. Selected pictures’ sizes are varying from 21 Kbyte

to 2.86Mbyte with different dimensions (180*320 to

2448*3264 with 72dpi). In this experiment, the proposed

method uses a buffer with the size of 4096 Byte. We use

Rijndael cryptography with a key of 32 bit (minimum regular

key size) and a buffer size of 4096 Byte, Initialization

Vector (IV) of 16 Byte. The proposed method is implemented

by Visual Studio 2013 in C#.Net programming language, with

.Net framework 4.5. We used a well-known JPEG library,

LibJPEG.Net package which is developed by BitMiracle, to

evaluate the encryption on JPEG encoder in C#.Net

programming language.

We assume our application have an access to a pre-defined

{'�} to avoid the computation overhead.

2) The result of the experiment

We implemented the proposed method with pattern A

(according to the Figure 3) and Rijndael encryption method to

compare the response times. As shown in Figure 6, the size of

files increases, the proposed method provides a flat response

time but the response time for Rijndael encryption increases

linearly. As shown in this figure, encryption on JPEG encoder

has more computation overhead over two other methods

because it is required to read each pixel by a JPEG decoder,

encrypt each pixel and use the JPEG encoder to write the result.

B. Statistical Model

Another approach to evaluate the proposed method is

statistical model that presents a deviation of each chunk

position between the position in original file and the position in

scramble file.

To evaluate the proposed method, we select three different

values of 9 and we select the same other initial values as

follows: 'F = .9999 , the maximum size of input file is

3057 Kbyte (the maximum size of our dataset images in the

Section IV.2) and the size of each chunk (buffer size) is

Fig. 5. A comparison between '-I7 and its relocation ('-I7)

0

50

100

150

200

250

300

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

'-
I�(

�-�
-$

〖�
ℎ

��
〗_�

zℎ� �ℎ
�� �
�{�

'-I7 '-IQ

10 Kbyte. Figure 7 shows a deviation of the original chunk

position and the same chunk position in scrambled file with

different parameters of (9) values.

In Figure 7, X-axis represents eight selected '-I7 and

'-I78� and the Y-axis represents the deviation of position of

'-I7 and '-I78� in scrambled file. As shown in this diagram,

each two consecutive positions in a scramble file has different

deviations. The different values of 9 provide different models

of file scrambling. As shown in this figure, the deviation of each

curve are different for different initial values of 9.

We also compare the position of each chunk in the original

file and in the scrambled file. We use the configuration of

Figure 7 and we assume the original file is scrambled in one file

that includes the header and the content of the original file.

Figure 8, shows the deviation of a chunk position from the

original file to the new position in the scrambled file. As shown

in this figure, each chunk is relocated to different locations in

scrambled file and the value of each chunk is vary chunk to

chunk, randomly.

V. SECURITY ATTACK SCENARIOS

In this section, we present different security attack scenarios

that an attacker can implement against the proposed method.

An attacker requires assembling all split files and all chunks

in each split file to retrieve an image. The proposed method

provides a scrambled binary file that provides an obstacle for

JPEG encoders to retrieve images because a JPEG encoder

requires specific markers which are scrambled through split

files.

We assume that the attacker wants to retrieve a JPEG file

with a 2 MByte size and the attacker uses an Intel CPU i7

4770K with 127273 MIPS at 3.9 GHZ. The following scenarios

can be implemented against the proposed method:

A. Scenario 1

Assumptions: the attacker who has access to all split files

but dos not know {'�} and the size of each chunk

In this scenario, since the attacker does not have information

of {'�}, the attacker must run a brute-force attack to assemble

split files and reorganize the scrambled chunks in split files. It

requires minimum |((�! − 1) − ~), where ~ is the number of

similar bytes in all files and � is the size of file (byte). In this

case, the attacker needs to try 2.229077716E + 9381

permutation combinations to reconstruct the image (~ ≈ 0).

Using this scenario with this CPU configuration to retrieve

an image is impossible and it is required

A. A comparison of disassembling files with pattern A and

encryption methods for 21 JPEG pictures

B. A comparison of assembling files with pattern A and

Decryption method for 21 JPEG pictures

Fig. 6. Experimental results

0

100

200

300

400

500

600

700

800

900

1000

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Size of file (KB)

The proposed Method

Rijndael Encyption

Encryption on JPEG encoder

0

20

40

60

80

100

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Size of file (KB)

The proposed Method

Rijndael Encyption

Fig. 7. A deviation of chunks positions in scramble file with

different parameter values

0

50

100

150

200

250

300

350

9=3.684 9=3.67 9=3.88

��
S��

(�-
�

2.027100061111045012201E+9371 years for processing the

computations.

B. Scenario 2

Assumptions: The attacker has access to all split files,

knows the size of each chunks (10Kbyte) but does not

know {'�}.

In this scenario, the attacker needs to run a brute-force

attack but the computation on size of the scrambled files

(3070 Kbyte) is divided to the size of each chunk (10Kbyte). In

this case, the attacker needs to try a minimum of 307! − 1

permutation combinations to reconstruct scrambled file, needs

an impossible computation (6.677321883507716595116E+621

years) to compute all permutation combinations.

C. Scenario 3

Assumptions: The attacker has access to all split files,

knows the size of chunks (10Kbyte) but does not know the

method is based on chaos system.

In this scenario, the attacker needs to use a brute-force

attack against the proposed method that requires a computation

with |(_
�F ! − 1) − ~), where ~ is the number of similar bytes

in all files and � is the size of the original file (3070 Kbyte). In

this case, the attacker needs |(307!) computation.

D. Scenario 4

Assumptions: The attacker has access to one file of the

multiple split files.

In this scenario, since each two consecutives chunks stores

in different clouds (i.e., using Pattern A in Figure 3), the

attacker only could retrieve a part of an image by using a brute-

force attack. We can estimate the probability of finding the size

of each chunks as follows:

z = ∑ ����!
�

������
��� (12.)

where I�"� represents the size of file (byte).

The worst case of this scenario is described as follows:

z = ∑ ����!
�

������
��� (13.)

The attacker needs to try all z! permutation combination to

reconstruct a partial of an image.

VI. RELATED WORKS

Several studies [16-22] have been conducted to image

encryption. Unlike these studies that address encryption

methods based on JPEG encoders, our proposed method

provides a light-weight data privacy based on binary file. As

described in Section III, using JPEG encoders has computation

overhead for mobile devices, such as smart phones. Our

proposed method uses the binary file rather than using encrypt

method on image pixels or color of a pixel.

Podesser et al. [17] proposed a selective encryption method

for mobile devices to cipher a partial of an image. However, in

this method, still a partial of image is visible to everyone.

Choo et al. [18] proposed a light-weight method for real-time

multimedia transmission. Although this method provides an

efficient performance over AES encryption, the method still

needs heavy computation on a smart phone to cipher an average

3Mbyte JPEG image file in a real-time (see Section V for the

comparison).

 Unlike existing studies, our proposed method provides

three steps to reconstruct a JPEG image file as follows:

(i) Recognizing the type of the scrambled files: It is difficult

to understand the type of file because the header of file

(includes JPEG marker) splits from the content of file and all

the chunks are scrambled in each file.

(ii) Finding and assembling the scrambled files: Since the

split files distributed through two or multiple clouds, it is

impossible to reconstruct an image file completely.

(iii) Reconstructing the original file from split scrambled

files: Reconstructing split scrambled files requires heavy

computations to retrieve partial or full image.

The proposed method hides JPEG markers from image

decoders that does not allow JPEG encoders to retrieve the

metadata of a scramble image. For example, Figure 9 shows:

(a) an original image; (b) a scrambled JPEG file based on the

proposed method (if we save the file with a JPG extension); (c)

a cipher image based on JPEG encoder; (d) a cipher image

based on AES. As shown in this figure, the proposed method

and AES cannot retrieve the information of an image and the

size of an image. However, metadata of an image can be

retrieved for a cipher image based on a JPEG encoder. As

described in Section IV, our proposed method provides a better

performance over existing methods. The proposed method can

be implemented for different applications in cloud computing

systems such as [23] to collect information by a web crawler

Fig. 8. A statistical deviation of position in original file

and scramble files

0

50

100

150

200

250

300

0

2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

2
5

0

2
7

5

3
0

0

��
S��

(�-
�

zℎ� �ℎ
�� Number

and maintain the privacy of the information in a cloud

computing system. The method can be applied to eHealth

systems [24] to maintain data privacy.

VII. CONCLUSION

In this paper, we proposed a new data privacy method to

store JPEG files on multi cloud computing systems. Since the

method uses less complexity, we have shown, the implemented

method provided a cost effective solution for mobile devices

that do not have enough energy for resources, such as CPU and

RAM. The proposed method splits each file to multiple chunks,

distribute each chunk to multiple split files, and scramble

chunks based on chaos system. The proposed method provides

low computation overheads and it can efficiently run on a smart

phone. It restricts unauthorized users including cloud vendors

and their partners to reconstruct a JPEG image file. We

compared our proposed method against other encryption

methods to demonstrate its performance superiority over

existing methods. Furthermore, we investigated some

important security attack scenarios against the proposed

method to evaluate the level of security.

ACKNOWLEDGEMENT

The implementation work of the application was supported

by Microsoft Windows Azure through Windows Azure

Educator Award.

REFERENCES

[1] Mehdi Bahrami and Mukesh Singhal, “The Role of Cloud Computing
Architecture in Big Data”, Information Granularity, Big Data, and
Computational Intelligence, Vol. 8, Chapter 13, Pedrycz and S.-M. Chen
(eds.), Springer, 2014 http://goo.gl/E1TmXu

[2] Mukesh Singhal ,"A Client-centric Approach to Interoperable Clouds",
International Journal of Soft Computing and Software Engineering
[JSCSE], Vol. 3, No. 3, pp. 3-4, 2013, Doi: 10.7321/jscse.v3.n3.2

[3] Mukesh Singhal, Santosh Chandrasekhar, Gail-Joon Ahn, Elisa Bertino,
Ram Krishnan, Ravi Sandhu and Ge Tingjian, “Collaboration in Multi-
Cloud Systems: Framework and Security Issues”, IEEE Computer, Vol
46, No 2, February 2013, pp. 76-84.

[4] Adibi, Sasan, Nilmini Wickramasinghe, and C. Chan. "CCmH: The Cloud
Computing Paradigm for Mobile Health (mHealth)" The International
Journal of Soft Computing and Software Engineering [JSCSE] 3.3 (2013):
403-410.

[5] Rodrigues, Joel JPC, et al. "Distributed media-aware flow scheduling in
cloud computing environment" Computer Communications 35.15 (2012):
1819-1827.

[6] Huang, Dijiang. "Mobile cloud computing" IEEE COMSOC Multimedia
Communications Technical Committee (MMTC) E-Letter 6.10 (2011):
27-31.

[7] Landau, Susan. "Highlights from Making Sense of Snowden, Part II:
What's Significant in the NSA Revelations" Security & Privacy, IEEE
12.1 (2014): 62-64.

[8] Kumar, Karthik, and Yung-Hsiang Lu. "Cloud computing for mobile
users: Can offloading computation save energy?" Computer 43.4 (2010):
51-56.

[9] Ristenpart, Thomas, et al. "Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds" Proceedings of the
16th ACM conference on Computer and communications security. ACM,
2009

[10] Daemen, Joan, and Vincent Rijmen, “The design of Rijndael: AES-the
advanced encryption standard”, Springer, 2002.

[11] Osvik, Dag Arne, et al. "Fast software AES encryption" Fast Software
Encryption. Springer Berlin Heidelberg, 2010.

[12] Yoshikawa, Masaya, and Hikaru Goto. "Security Verification Simulator
for Fault Analysis Attacks", International Journal of Soft Computing and
Software Engineering, vol.3, no.3, 71, March 2013.

[13] Digital Compression and Coding of Continuous-Tone Still- Images
Requirements and Guidelines, T.81, ITU retrived on 11/11/2014 at
http://www.w3.org/Graphics/JPEG/itu-t81.pdf

[14] Chakraborty, Debrup, and Palash Sarkar. "A new mode of encryption
providing a tweakable strong pseudo-random permutation" Fast Software
Encryption. Springer Berlin Heidelberg, 2006.

[15] Gharajedaghi, Jamshid, “Systems thinking: Managing chaos and
complexity: A platform for designing business architecture”, Elsevier,
2011.

[16] Lian, Shiguo, Jinsheng Sun, and Zhiquan Wang. "A novel image
encryption scheme based-on JPEG encoding." Information Visualisation,
2004. IV 2004. Proceedings. Eighth International Conference on. IEEE,
2004.

[17] Podesser, Martina, Hans-Peter Schmidt, and Andreas Uhl. "Selective
bitplane encryption for secure transmission of image data in mobile
environments." Proceedings of the 5th IEEE Nordic Signal Processing
Symposium (NORSIG’02). 2002.

[18] Choo, Euijin, et al. "SRMT: A lightweight encryption scheme for secure
real-time multimedia transmission." Multimedia and Ubiquitous
Engineering, 2007. MUE'07. International Conference on. IEEE, 2007.

[19] Ye, Guodong. "Image scrambling encryption algorithm of pixel bit based
on chaos map." Pattern Recognition Letters 31.5 (2010): 347-354.

[20] Z. Liu and X. Li. Motion vector encryption in multimedia streaming. In
Int. Conf. on Multimedia Modeling. IEEE, 2004.

[21] W. Zeng and S. Lei. Efficient frequency domain selective scrambling of
digital video. IEEE Transactions on Multimedia, 5(1), Mar. 2003.

[22] Ra, Moo-Ryong, Ramesh Govindan, and Antonio Ortega. "P3: Toward
Privacy-Preserving Photo Sharing" NSDI. 2013.

[23] Mehdi Bahra, Mukesh Singhal and Zixuan Zhuang, "A Cloud-based Web
Crawler Architecture" in 2015 18th Int. Conf. Intelligence in Next
Generation Networks: Innovations in Services, Networks and Clouds
(ICIN 2015), Paris, France, IEEE, 2015.

[24] Rodrigues, Joel JPC, et al. "Analysis of the security and privacy
requirements of cloud-based Electronic Health Records Systems" Journal
of medical Internet research 15.8 (2013).

(a)

(b)

(c)

(d)

Fig. 9. (a) the original image; (b) a scrambled image based on the proposed method;

(c) a cipher image based on JPEG encoder; (d) cipher image based on AES encryption

