
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-019-03004-3

1 3

A hybrid scheduling platform: a runtime prediction
reliability aware scheduling platform to improve HPC
scheduling performance

Mina Naghshnejad1 · Mukesh Singhal1

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The performance of scheduling algorithms for HPC jobs highly depends on the
accuracy of job runtime values. Prior research has established that neither user-pro-
vided runtimes nor system-generated runtime predictions are accurate. We propose
a new scheduling platform that performs well in spite of runtime uncertainties. The
key observation that we use for building our platform is the fact that two impor-
tant classes of scheduling strategies (backfilling and plan based) differ in terms of
sensitivity to runtime accuracy. We first confirm this observation by performing
trace-based simulations to characterize the sensitivity of different scheduling strate-
gies to job runtime accuracy. We then apply gradient boosting tree regression as a
meta-learning approach to estimate the reliability of the system-generated job runt-
imes. The estimated prediction reliability of job runtimes is then used to choose a
specific class of scheduling algorithm. Our hybrid scheduling platform uses a plan-
based scheduling strategy for jobs with high expected runtime accuracy and back-
fills the remaining jobs on top of the planned jobs. While resource sharing is used
to minimize fragmentation of resources, a specific ratio of CPU cores is reserved
for backfilling of less predictable jobs to avoid starvation of these jobs. This ratio
is adapted dynamically based on the resource requirement ratio of predictable jobs
among recently submitted jobs. We perform extensive trace-driven simulations on
real-world production traces to show that our hybrid scheduling platform outper-
forms both pure backfilling and pure plan-based scheduling algorithms.

Keywords HPC scheduling · HPC cluster · Runtime prediction · Scheduling
platform · Hybrid scheduling · Estimating prediction reliability · Meta-learning ·
Applied machine learning

 * Mina Naghshnejad
 mnaghshnejad@ucmerced.edu

 Mukesh Singhal
 msinghal@ucmerced.edu

1 Electrical Engineering and Computer Science, University of California, Merced, CA 95343,
USA

http://orcid.org/0000-0001-5672-142X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-019-03004-3&domain=pdf

 M. Naghshnejad, M. Singhal

1 3

Real knowledge is to know the extent of one’s ignorance.
Confucius.

1 Introduction

With ever increasing usage of HPC clusters by scientific researchers, the diversity
of applications submitted to HPC clusters is non-deniable. This diversity requires
smarter scheduling strategies to keep resource usage efficient while meeting the
cluster customers’ preferred performance goals. The management of job deploy-
ment and scheduling is performed by job management systems in HPC clusters. Job
management systems for HPC clusters need to perform resource allocation and job
scheduling cleverly to avoid capital and operational expenses for operating the clus-
ter. Extensive research has been done in designing scheduling platforms with bet-
ter performance and higher efficiency. However, most of these algorithms require
an accurate value for job runtime. It is well known that user-provided runtime esti-
mations are far from accurate [1–3]. Several systems-generated runtime prediction
approaches based on the runtime of previously executed jobs have been proposed.
However, due to the inherent uncertainties in job runtime values, perfect prediction
of runtimes is not possible [4]. To the best of our knowledge, no reliability estima-
tion for individual runtime predictions has been done in the past. Our studies on
HPC trace data show that although prediction approaches predict runtimes for some
jobs very accurately, they provide inaccurate predictions for a subset of submission
jobs. The reliability of individual job predictions provides valuable information to
be used by scheduling platforms. We use a supervised machine learning approach to
estimate the reliability of each job runtime prediction. In other words, we determine
if a runtime prediction for each new job is reliable using a machine learning model
trained on previously completed jobs. We then use our estimations of the accuracy to
design a scheduling platform that deploys an appropriate scheduling strategy based
on the predictability of the runtime for each job. For that purpose, we first conduct
experiments in multiple HPC trace datasets and measure the sensitivity of different
scheduling algorithms to job runtime accuracy. Having done so, we design a reli-
ability estimation approach to determine the accuracy estimates, which is a valuable
input for our scheduling platform.

To be able to pick the best scheduling strategy based on the reliability of job runt-
ime prediction, it is worthwhile to study the sensitivity of job scheduling policies
to job runtime accuracy. There are two well-known groups of scheduling policies
for HPC jobs: backfilling policies and plan-based policies. While backfilling tries to
fill the free resources created by first come first served (FCFS) ordering jobs, plan-
based scheduling routinely finds the optimal/near-optimal ordering of jobs to fill the
resources. In backfilling, the initial ordering of jobs limits the feasibility of resources
for later shorter jobs even though backfilling is far from optimal. The popularity of
backfilling is due to its acceptable performance with inaccurate runtime prediction.
However, with the advent of more accurate online prediction models, more plan-
based approaches have been proposed [5]. One may assume that with more accu-
rate prediction approaches, plan-based scheduling algorithms perform best. This is

1 3

A hybrid scheduling platform: a runtime prediction…

not true. One issue about using machine learning approaches for runtime predic-
tion is the fact that machine learning models are trained based on minimizing a loss
function. The loss function often minimizes average error over all training points
and does not necessarily perform well for all individual data points [6]. As a result,
machine learning prediction approaches may not make accurate predictions for a
large subset of submitted applications in an HPC cluster. The question is whether
we can determine if a machine learning model accurately predicts the runtime for a
specific newly submitted job. In Sect. 4.4.2, we see that we actually can have accu-
rate estimations of runtime prediction accuracy values for job runtimes. We call this
estimation the prediction reliability estimation following some previous works in
machine learning literature [6]. Using the reliability estimation, we categorize jobs
into two categories of predictable and unpredictable jobs and design our hybrid
scheduling platform around these two categories of jobs.

1.1 Contributions

The research presented in this paper addressed three questions. (1) Do different
scheduling strategies differ in sensitivity to prediction accuracy? (2) Can we esti-
mate the prediction reliability of individual jobs? (3) Can we improve the perfor-
mance and efficiency of scheduling HPC clusters with the knowledge of the answer
to the first two questions? To answer the first question, we performed sensitivity
experiments with scheduling strategies from the two broad groups of backfilling
and plan-based. We observed that backfilling strategies are less sensitive to runt-
ime accuracy. We also observed that the performance of plan-based strategies sig-
nificantly improves with more accurate runtime values. We then studied prediction
reliability and experimented existing approaches in machine learning literature for
estimating prediction reliability for job runtime values. Based on our experiments,
we designed a supervised model that estimates the accuracy of runtime using gradi-
ent boosting tree regression. The Pearson correlation for our estimated accuracies
and the actual accuracy is 0.84 on our test data. We then designed a hybrid sched-
uling platform that picks a policy for scheduling each job based on the reliability
of its runtime prediction. Our platform first schedules the predictable jobs using a
plan-based scheduling strategy and then backfills the less predictable jobs on the
top. To avoid starvation of resources, a dynamically adaptive portion of resources
is reserved for backfilling jobs. However, backfilled jobs can use all the remain-
ing available resources to avoid resource fragmentation. Our extensive trace-based
simulations show that our platform outperforms each of the two strategies deployed
individually in terms of performance and efficiency.

1.2 Paper organization

We start by presenting the problem and related background in Sect. 2. We review
related work for HPC scheduling as well as prediction reliability estimation in
machine learning literature in Sect. 3. We present our approach for reliability

 M. Naghshnejad, M. Singhal

1 3

estimation and hybrid scheduling platform in Sect. 4. We present our trace-based
experiments with actual data in Sect. 5. We conclude our work in Sect. 6.

2 Background and problem description

In this paper, we are interested in a solution for improving the performance of sched-
uling jobs in HPC clusters in the existence of job runtime inaccuracies. The HPC
applications are submitted to a central application management system. The job
management system decides the allocation of resources to the applications. As the
resources are finite, the applications may need to wait until they acquire resources.
The users are often asked to provide running time and the required CPU and mem-
ory for their applications. It is well known that the users submit an overestimated
runtime mostly because the application manager kills the applications if they take
longer than the user-estimated runtime [7].

In order to better present the problem, we first define our notion of a job in HPC
cluster: a job or application j is considered with specific submission time and
resource requirement. At the time of submission, a value of runtime and resource
requirement is submitted by the user. There are n independent jobs (indexed by inte-
gers), where application j has the following characteristic:

• Submission time: rj
• Resource requirement: dj
• Actual running time: pj
• Requested running time: p̂j.
• Additional features (descriptors) including the user that submitted the applica-

tion, the time of the day the application submitted, etc.

In Fig. 1, an application j is illustrated as a solid rectangle on the right, with length
equal to actual runtime (pj) and resource requirement equal to dj . In the figure at left,
the abstraction of resources in the HPC cluster is illustrated. The vertical dimension
represents the total resources in the system, and the horizontal axis denotes time.
In this section, we first present a background on scheduling approaches for HPC

Server

ca
pa

ci
ty

time

job

de
m
an

d

size

Fig. 1 Each job j is illustrated as a two-dimensional rectangle with height equal to its demand dj and
width equal to its size pj . Each server has the unit capacity. Jobs can run simultaneously on each server
as long as the total demand/height of running jobs do not exceed the server’s capacity

1 3

A hybrid scheduling platform: a runtime prediction…

clusters and introduce the issue of uncertainty in HPC workload traces. We then pre-
sent the formulation of the problem we study in this paper.

2.1 Common scheduling algorithms for HPC workloads

FCFS is the most well-known scheduling algorithms for HPC jobs. FCFS schedules
jobs in order of their submission. FCFS is a list scheduling algorithm that prior-
itizes jobs based on their submission time. In list scheduling algorithms, also known
as queue-based scheduling algorithms, if there are enough available resources,
resources are allocated to the submitted job and the job starts to process. Otherwise,
the job is kept in a queue. Using FCFS does not consider the geometry of jobs to
pack them tightly into resources. To improve the performance of FCFS, two strate-
gies have been proposed: backfilling (FCFS-BF) [8] and plan-based scheduling [5]
algorithms. In Fig. 2, an FCFS backfilling scheduling strategy is compared with a
plan-based scheduling algorithm. While backfilling backfills the free resources avail-
able after FCFS scheduling with smaller jobs from the back of the queue, plan-based
scheduling uses the runtime of jobs in the queue to find the near-optimal ordering
jobs before assigning the jobs. As these two groups of scheduling algorithms are the
building blocks of our hybrid scheduling platform, we elaborate their characteristics
in the following subsections.

2.1.1 FCFS scheduling with backfilling

In FCFS with backfilling, jobs are prioritized based on their submission time to the
system. Several variety of backfilling algorithms are proposed including EASY [9],
conservative [8] and slack backfilling [10] algorithms. Although FCFS only relies on
submission time to order the jobs, all these backfilling approaches rely on runtime

Fig. 2 The comparison of a plan-based scheduling algorithm (online-SJF) and a backfilling scheduling
algorithm (FCFS-SJF) algorithms on an example of seven jobs

 M. Naghshnejad, M. Singhal

1 3

values to make the backfilling decision. Most of the resource management systems
deployed in HPC clusters including SLURM [11], Cobalt [12], IBM LoadLeveler
[9] use FCFS with backfilling. FCFS scheduling algorithms are used mainly due
to their simplicity and scalability as well as stability to inaccurate input runtimes.
The EASY-backfilling algorithm acts like a greedy first fit scheduler in the case that
the next job in the queue has more resource demand than the available resources. It
takes the first job from the back of the queue and fits into the available space.

One important observation is that as EASY-backfilling tries to backfill jobs
greedily into available resources created by the FCFS ordering of jobs, its perfor-
mance does not degrade substantially with inaccurate runtime estimates. On the
other hand, the performance of the EASY does not improve substantially with more
accurate runtime values. FCFS-SJF was proposed in [13] to use the application runt-
ime for backfilling decision. In FCFS-SJF, the backfilled jobs are chosen in the order
of increasing runtime and are commonly used in the works that propose more accu-
rate prediction approaches to runtime prediction as SJF-BF is more sensitive to runt-
ime prediction accuracy than EASY. We will also consider FCFS-SVF that orders
jobs based on volume(multiplication of runtime and required CPU). FCFS-SJF
and FCFS-SVF have some level of sensitivity to runtime accuracy, but still, have
acceptable performance in the absence of accurate runtime prediction. In our experi-
ments, we use FCFS-SJF and FCFS-SVF as representatives of FCFS with backfill-
ing algorithms.

2.1.2 Plan‑based scheduling algorithms

On the other side of the scheduling algorithms spectrum are the plan-based algo-
rithms. Instead of deploying jobs immediately, plan-based approaches try to find a
near-optimal ordering of jobs to optimize scheduling performance for a group of
submitted jobs. The main issue with plan-based scheduling algorithms is the fact
that their performance is highly sensitive to the accuracy of jobs’ runtime predic-
tions. As in real-world scenarios, user runtime estimates used for scheduling are not
accurate; plan-based scheduling algorithms do not perform well. We study several
plan-based and backfilling approaches and propose an adaptive hybrid scheduling
platform. Our sensitivity analysis experiments in the next subsection show how
plan-based work well with accurate and backfilling with inaccurate predictions.
Plan-based scheduling algorithms try to search over the solution space to make the
best scheduling decision for each job. As the problem is dynamic and jobs are sub-
mitted over time, the planning routine needs to be done periodically and based on
the jobs already in the systems. Several plan-based scheduling policies have been
proposed. Some policies propose a complete search over the solution space, and
some propose local search to improve the computation overhead [5, 14, 15].

Although these methods claim to have better performance than backfilling sched-
uling methods, several issues make them less popular for cluster managers. First, for
most of these approaches, the computational overhead for decision making makes
them less favorable. Furthermore, they completely rely on job runtimes for their
decisions and perform poorly if the runtimes are not accurate.

1 3

A hybrid scheduling platform: a runtime prediction…

In this paper, for the choice of plan-based strategy in our hybrid scheduling plat-
form, we use online priority-based scheduling algorithms. Online priority-based
scheduling algorithms are the plan-based version of commonly used priority-based
scheduling algorithms. Online priority-based scheduling algorithms have the high
performance of plan-based scheduling algorithms on the availability of accurate
runtime values while they have a low computational overhead. Shortest job first
(SJF) algorithm is well known to have optimal performance in the offline case when
one job is allowed to run at a time. In [16], authors proposed smallest volume first
(SVF) as the two-dimensional extension of SJF that reaches near-optimal perfor-
mance in the offline case. In comparison with other plan-based scheduling, includ-
ing heuristic search algorithms, list-based scheduling algorithms are considerably
faster. Online-SJF and online-SVF are dynamic. Similar to the other plan-based
scheduling algorithms, new ordering is computed at the time of the system events.
With using appropriate data structures like Heap, reordering the list takes constant
time. Our experiments show that SVF outperforms SJF and other commonly used
scheduling algorithms when accurate runtimes are provided. In this work, we use
online-SVF as the plan-based scheduling algorithm and call it plan-based schedul-
ing in the rest of this paper.

2.2 Sensitivity to job runtime accuracy

To study the sensitivity of backfilling and plan-based schedulers, we studied four
traces from parallel workload dataset [17] in detail. These datasets contain traces of
applications submitted to HPC clusters. An immediate observation, as noted by sev-
eral previous works [13, 18], is inaccurate user estimates of job runtimes. In recent
years, several prediction approaches are proposed [13, 19], and so some of them can
predict application runtimes as accurate as 0.80. The question is how these more
accurate predictions affect the scheduling performance for both customer satisfac-
tion criterion (performance) and cluster provider criterion (utilization). To answer
this question, we perturbed the available traces to provide traces with variable runt-
ime prediction accuracy and simulated several scheduling algorithms discussed in
the previous section to compare the scheduling algorithms regarding their sensitivity
to accuracy. We also want to compare how different scheduling algorithms perform
with more accurate runtimes. FCFS does not use runtime estimates and schedules
jobs on the order of submission, so the average wait time of FCFS is not impacted
by more accurate runtime prediction. The critical point to notice is the sensitivity of
online-SJF and online-SVF to the accuracy of runtime. These two algorithms do not
perform well with user-estimated runtimes, which are generally inaccurate.

Through our extensive trace-based simulations, we realized that plan-based
scheduling algorithms are more sensitive to prediction accuracy than backfill-
ing algorithms. The good news is that they outperform backfilling algorithms if an
almost accurate prediction is available (accuracy more than 0.60). We perturbed the
existing traces from ANL, LLNL, HPC2N and SDSC to build trace datasets with
0.20, 0.40, 0.60 and 0.80 runtime value accuracies and simulated backfilling and
plan-based scheduling algorithms with the perturbed runtimes. The results of these

 M. Naghshnejad, M. Singhal

1 3

experiments are demonstrated in Fig. 3. We can see that for all four datasets, for
accuracy level higher than a threshold (0.40–0.80), online-SVF outperforms all the
other algorithms in terms of wait time.

2.3 Job runtime prediction reliability estimation

As discussed earlier, runtime values by users are far from accurate [13]. Several
approaches have been proposed to generate more accurate runtime predictions based
on available information about the job at the time of submission [20]. In [18], sev-
eral time-series-based approaches are used to predict job runtimes of incoming
applications. A machine learning approach was proposed in [19] where the authors
propose an online learning model that makes a prediction for each newly submitted
job and updates the prediction model with newly available runtime after completion
of each job. However, to the best of our knowledge, there has not been any study
about confidence or reliability of runtime predictions for individual jobs. In some
other works, including [20] specific information about the application is used by a
machine learning model to predict its performance in HPC cluster. In [21], authors
use source code content to analyze the performance of the application on a simu-
lated HPC infrastructure. In [22], authors propose state-space models to predict
runtime of HPC applications. One important issue in using predicted runtimes is
the fact that for some jobs, the prediction accuracy is low. Hence, there is the need

Fig. 3 Wait times of FCFS, FCFS-SJF, FCFS-SVF, online-SJF and online-SVF are plotted for traces
with different accuracy levels

1 3

A hybrid scheduling platform: a runtime prediction…

to measure the expected prediction accuracy for specific jobs that we denote as indi-
vidual prediction reliability for job runtimes. Evaluating the quality of prediction
accuracy is a challenging problem in machine learning [23]. Using the individual
prediction accuracy metric (2) for previous jobs, we train a regression model to pre-
dict job runtime accuracy for the newly submitted jobs. When a job is submitted to
the HPC cluster, information including the user id, time of submission, requested
runtime, CPU and memory is available for each job; we extract useful features from
job log. We explain the details of our approach to Sect. 4. The prediction accuracies
estimated by our reliability estimation machine have a Pearson correlation of 0.84
with actual accuracies for HPC2N trace data.

2.4 Job runtime prediction reliability estimation

As discussed earlier, runtime values by users are far from accurate [13]. Several
approaches have been proposed to generate more accurate runtime predictions based
on available information about the job at the time of submission. In [18], several
time-series-based approaches are used to predict job runtimes. A machine learning
approach was proposed in [19] where the authors propose an online learning model
that makes a prediction for each newly submitted job and updates the prediction
model with newly available runtime after completion of each job. However, to the
best of our knowledge, there has not been any study about confidence or reliability
of runtime predictions for individual jobs. One important issue in using predicted
runtimes is the fact that for some jobs, the prediction accuracy is low. Hence, there
is the need to measure the expected prediction accuracy for specific jobs that we
denote as individual prediction reliability for job runtimes. Evaluating the quality
of prediction accuracy is a challenging problem in machine learning [23]. Using the
individual prediction accuracy metric (2) for previous jobs, we train a regression
model to predict job runtime accuracy for the newly submitted jobs. When a job is
submitted to the HPC cluster, information including the user id, time of submission,
requested runtime, CPU and memory is available for each job; we extract useful fea-
tures from job log. We explain the details of our approach to Sect. 4. The prediction
accuracies estimated by our reliability estimation machine have a Pearson correla-
tion of 0.84 with actual accuracies for HPC2N trace data.

2.5 Formulation of the problem

The problem studied in this work is to execute a set of concurrent parallel jobs with
rigid resource requirements on an HPC platform with m units of resources. The jobs
are submitted over time in an online manner.

The resource requirement dj of an application j is equivalent to the user-requested
resource known at the time of submission. The actual value of runtime is only
known a posteriori when the job completes. The problem we are trying to solve is
how to schedule applications to achieve better performance and utilization, without
knowing the accurate runtime values at submission time.

 M. Naghshnejad, M. Singhal

1 3

Although application runtime has some correlation with several features, as dis-
cussed in previous works [19], 100% accurate prediction of application runtimes is
not possible [19]. Thus, we are looking for scheduling solutions that improve the
performance and utilization over the currently used approaches when 100% accurate
prediction is not available for all jobs in the system and more specifically are inter-
ested in a scheduling solution that:

• is online.
• has low overhead.
• performs well even with inaccurate runtime predictions.
• achieves high performance when accurate predictions are available.
• outperforms commonly used scheduling strategies in a real-world setting (accu-

rate runtime is available for a subset of jobs).

3 Related work

The necessity of runtime prediction for parallel applications has been highlighted
since the last years of twentieth century [24]. Different approaches have been pro-
posed to predict HPC application runtimes with different machine learning method-
ology as well as prediction features inputs [13, 25]. Several time-series-based meth-
odologies are proposed to use the information available about completed jobs in the
system to predict the runtime for newly submitted jobs. They are mainly exponen-
tial smoothing and moving average methodologies that predict future values based
on the recent runtime values. As noted by [18], these methods are not accurate and
will not improve scheduling performance and utilization significantly. Some earlier
works profile the existing applications and form a model similar to the regression
decision tree to predict the runtime of the new application based on the most simi-
lar application profile [24, 26]. In [26], authors apply genetic algorithms to search
among the history logs to find the most similar attributes. Wyatt II et al. [27] use
neural networks to predict the runtime of HPC applications. Several statistical meth-
ods fit a distribution to previous data and predict the new job runtime with mean and
confidence interval of the inferred distribution [13]. Nissimov and Feitelson [28]
draw sixteen different distribution from previous data and design a hidden Markov
model to transit along with these sixteen states. Some other researchers have consid-
ered additional features for each job in trace and performed predictions based on the
similarity between these features of the jobs [29, 30]. Some more recent works focus
on the specific family of scientific workflows and use machine learning for predict-
ing runtime and resource usage for these applications [31]. Several works have pro-
posed interrogating of codes to extract features for runtime prediction. This is not
practical in many cases due to privacy considerations. Making an accurate predic-
tion for application runtime is not easy. In fact, the scarcity of relevant training data
makes the model building cumbersome. Several online prediction methods have
been proposed that use the recently completed jobs in the same trace to strengthen
the predicting power of their model [18, 25].

1 3

A hybrid scheduling platform: a runtime prediction…

Some authors correctly identified the importance of avoiding overfitting the value
of runtimes and considered approaches that favor under-prediction over over-predic-
tion as over-predicted runtime values impose the expense of killing incomplete jobs
[3, 19].

Similar to our work, some previous works considered inaccurate predictions.
They proposed a solution to handle inaccuracies in predicted runtime values.
Authors in [32] considered error margins for runtime prediction to be considered for
runtime adjustment. In [33], authors developed an execution delay model for runt-
ime prediction and designed an adaptive stochastic allocation strategy for production
workload traces. Ilyushkin and Epema [34] study the effect of runtime inaccuracy
and find out that the bounded slow-down affected by inaccurate runtimes in highly
utilized clusters.

4 Proposed hybrid scheduling platform

The study of sensitivity in Sect. 2.2 gave us an intuition to design a hybrid schedul-
ing platform. Since in real-world situations, accurate values of job runtimes are not
available, we propose a hybrid scheduling platform that uses FCFS with backfill-
ing for jobs with unpredictable runtime. At the time of job submission, the normal-
ized regression model is used to predict the job runtime value in an online man-
ner. Then, jobs are classified into two queues of predictable and unpredictable using
our trained reliability estimation model. Our platform schedules jobs with higher
expected runtime accuracy using plan-based scheduling. The platform then per-
forms backfilling to schedule the jobs in the unpredictable queue on the remaining
available resources. The predictable and unpredictable jobs are defined below.

Predictable jobs These are jobs with high prediction reliability. We characterize
these jobs with an estimated runtime accuracy of 60% or more.

Unpredictable jobs These are jobs with low prediction reliability. We characterize
these jobs with estimated runtime accuracy of less than 60%.

Our resource manager dynamically determines the resource quota for pure prior-
ity-based algorithm based on the ratio of predictable jobs.

4.1 Proposed design

In Sect. 2.2, we demonstrated how priority-based scheduling algorithms outperform
backfilling algorithms when we have an almost accurate (accuracy of 60% and higher),
prediction of job runtimes. We use this observation to design a hybrid scheduling
algorithm. Similar to other algorithms discussed in Sect. 2.1, our algorithm is online,
and scheduling takes place in rounds. Two different policies, SVF and FCFS-BF, are
performed at each round. Using our reliability prediction model, we know for which
subset of jobs we have more accurate runtime values. Our hybrid model applies plan-
based scheduling for the subset of jobs and backfills the remaining jobs on the top. We

 M. Naghshnejad, M. Singhal

1 3

propose a hybrid scheduling algorithm that in a clever way amalgamates the backfilling
algorithms and plan-based scheduling algorithms. With our hybrid design, we benefit
from the effectiveness of backfilling scheduling approach when the runtime predictions
are inaccurate, and we benefit from the near-optimal performance of plan-based sched-
uling when the predictions are more accurate. We determine the reliability of predicted
runtimes using a supervised machine learning method of gradient boosting trees as pre-
sented in Sect. 4.4.2. The supervised regression outputs an estimation of the prediction
accuracy. Our scheduling platform puts jobs in two queues of predictable and unpre-
dictable based on their estimations of accuracy. For the jobs in unpredictable queue, the
platform does not rely on system-generated predictions. The platform uses the runtimes
requested by the user to backfill unpredictable jobs. Our hybrid scheduling platform
assigns a subset of resources to plan-based scheduling to improve utilization of the
resources and tops the remaining unused resources with backfilling. Our experiments
prove the improved performance and CPU utilization of the proposed hybrid approach
when compared to both pure plan-based and pure backfilling methodologies. Figure 4
presents the hybrid scheduling platform in detail. As demonstrated in Fig. 4, when a
job is submitted to the cluster, its information is stored in the repository. ML-unit cal-
culates the runtime prediction as well as estimated prediction accuracy. The hybridiza-
tion parameter calculator calculates the hybridization parameter based on the estimated
prediction accuracy values, as explained in Sect. 4.3. The hybrid central scheduler uses
the predicted runtime to order predictable jobs on � portion of resources and back-
fills the unpredictable jobs on top. After each job completes on the HPC system, its
actual runtime is recorded in the repository. As demonstrated in Fig. 4, our scheduling
platform has four main components: ML-unit, hybridization parameter adjusting unit,
centralized scheduler and repository. When a job is submitted to the system, its runtime
and prediction accuracy estimation are calculated in the ML-unit. The values of runt-
ime prediction and prediction accuracy estimation are used by the central scheduler to
determine the deployment time of the new job in the HPC system. After the job com-
pletes running, information about actual runtimes is saved in the repository to be used
by the ML-unit and hybridization parameter estimator unit. The repository contains the
necessary data including prediction model parameters for the ML-unit as predictability
estimation model. As a job completes running on HPC cluster, the runtime value is

Fig. 4 Overview of the HS platform design

1 3

A hybrid scheduling platform: a runtime prediction…

added to the repository. The centralized scheduler, the hybridization parameter adjust-
ing unit and the ML-unit are elaborated in the following subsections.

4.2 The central scheduler

Using the input from ML-unit, jobs are partitioned into two queues: predictable and
unpredictable jobs as defined in the beginning of current section. Jobs that are char-
acterized as predictable by ML-unit are input to a new queue called predictable. As
shown in Fig. 5, the hybrid scheduler is composed of two schedulers: plan-based
scheduler and backfilling scheduler. At first, the central scheduler performs plan-based
scheduling. It determines the starting time of each predictable job in the waiting queue
following a plan-based scheduling algorithm, as explained in Sect. 2.1. For this plan-
based scheduling, only a specific portion of resources using the specific portion of
CPU cores determined by hybridization parameter unit is considered. Second, after the
deployment plan of the predictable jobs is determined, FCFS with backfilling scheduler
determines the starting time of unpredictable jobs on the remaining available resources.
The complete schedule for all jobs is used to deploy jobs on the HPC cluster. This pro-
cedure is repeated at the time of each event in the computation cluster: job submission,
job completion or job termination.

4.3 The hybridization parameter adjusting unit

The ratio of resources used by plan-based scheduling policy to schedule predictable
jobs, � , is called hybridization parameter and will be updated by the hybridization
parameter adjusting unit in the platform. The parameter adjusting unit updates the value
of hybridization parameter, “ � ” based on the ratio of the sum of resource usage of pre-
dictable jobs to the total resource request all the jobs. The formula for updating � is
presented below.

where dj is the resource requirement for the job j as defined in Sect. 2. The initial
value of � denoted as �0 is chosen through a grid search as illustrated in Fig. 13.

(1)�t+1 = �t ∗

∑
i∈predictable di∑
j∈all jobs dj

Execution Queue

HPC System
Hybrid Scheduler

Submission Queue

Waiting Queue

Scheduler

Time

Re
so

ur
ceJ2

J1

J3

J5 J6

J7

J8

J8J9 J1J2. . .

J9

J1J3 J2J4

Plan-based
Scheduler

Time

Re
so

ur
ce

α

J3
J4J4

J1

J2

J4

J5 J6. . . J9 J4

Fig. 5 Central scheduler design

 M. Naghshnejad, M. Singhal

1 3

4.4 The ML‑unit

The ML-unit is responsible for predicting runtimes and estimating the accuracy of
the predicted runtimes. The runtime prediction is performed using online normalized
regression model [35, 36] similar to [19]. Another important component of ML-unit is
runtime reliability estimator. This component determines how predictable the runtime
of a given job is based on available features about the job at the time of submission. To
determine the prediction reliability of jobs, we use a gradient boosting tree model. The
model parameters are saved in the repository, and the model is rebuilt every 24 hours.
One important function of the ML-unit is to determine if the jobs belong to a predicta-
ble or a unpredictable class of jobs. In order to study prediction accuracy for individual
jobs, we need to use an appropriate metric to measure the accuracy of prediction for
individual jobs.

Measure of prediction accuracy Common measures of accuracy in machine learn-
ing such as mean squared error (MSE) measure the accuracy of prediction globally.
As we are interested in measuring and characterizing accuracy for each individual
point in data set, we use a point-wise measure of accuracy that has been proposed in
the literature of HPC job runtime prediction for HPC clusters [13, 18]. This metric
measures accuracy of runtime prediction for each job by comparing the predicted
job runtime value (p̂j) and actual job runtime (pj) as presented in Eq. 2.

4.4.1 Online job runtime prediction

As shown in Fig. 6, an online prediction module is in charge of predicting runtime
values. For a newly submitted job, the online prediction module predicts the runt-
ime. The model is tuned by using the actual runtime of completed jobs in the clus-
ter. The goal of the online job runtime prediction module is to predict job runtimes
in an online manner. As a job is submitted to the systems, a minimal set of features
are extracted from the job description as well as resource management systems. These
features are then used by an online job runtime prediction module to predict job runt-
imes. In our platform, we implemented an l2 regularized polynomial model similar to

(2)accj =

⎧⎪⎨⎪⎩

1 p̂j = pj
p̂j

pj
p̂j < pj

pj

p̂j
p̂j > pj

Fig. 6 Online learning module predicts runtime for the current job based on the feedback from previous
jobs

1 3

A hybrid scheduling platform: a runtime prediction…

[19]. New values of p̂i are predicted using features available from i − 1 completed jobs
: Z = {z11...z1i−1,… , zki−1} . In this work, we use online normalized regression model
as proposed in [36] similar to [19]. Online normalized regression is an appropriate
machine learning model for predicting runtimes as it is able to predict job runtimes
with minimal information, is online and is robust to noise in input data [36]. We use
online normalized regression with stochastic gradient descent to find a polynomial
functions of 18 input features, as listed in Table 1, corresponding to i − 1 previously
completed jobs Z = {z11...z1i−1, ..., zki−1} . The model gets updated as more jobs are
completed and the actual runtime values are available. The polynomial function to pre-
dict the runtime for a newly submitted job is of the form:

To build a model that predicts the runtime values most accurately, a loss function is
defined to penalize errors of the prediction using the training samples as in Eq. 5.
The parameters of the model, wi s, are found by minimizing a loss function as in
Eq. 4. The regularization term, �||w|| , is added to avoid bias in the model we are
learning by avoiding extreme values of parameters. The minimization of regularized
cumulative loss for up to i-th completed job is:

where � is the regularization parameter and f (w, zj) is our prediction for runtime of
job j. The loss function is defined as:

To focus on the symmetric inaccuracy of prediction, we consider the symmetric loss
function instead of asymmetric loss function in [19] and we penalize over-prediction
and under-prediction equally.

4.4.2 A meta‑learning approach to estimate runtime prediction accuracy

Meta-learning, or learning to learn, is the science of systematically observing
how different machine learning approaches perform [37]. Here, we are interested
in estimating the prediction accuracy of our online algorithm that predicts job
runtime. To estimate the prediction accuracy of job runtimes (prediction reli-
ability), we use a supervised regression model. The regression model predicts
runtime accuracy of the newly submitted jobs using the features presented in
Table 2 and accuracy of completed jobs as the target values. As shown in Fig. 7,
feature vectors of completed jobs, fi = {z1i,… , zki} , and their corresponding
prediction accuracy, acci, are used to train a regression model. The regression
model maps the features and the predicted runtime to accuracy values. We used
gradient boosting tree regression [38] as it is known to find a nonlinear map-
ping from data to target values [39]. The trained prediction reliability estimation

(3)f (w, z) = wT�(z).

(4)argw min

i∑
j=1

L
(
xj, f (w, z), pj

)
+ �||w||.

(5)L(zj, f (zj), pj) =

{
𝜆.f (zj) − pj)

2 (zj) ≥ pj
𝜆.(pj − f (zj))

2 f (zj) < pj

 M. Naghshnejad, M. Singhal

1 3

Ta
bl

e
1

 F
ea

tu
re

s c
on

si
de

re
d

fo
r o

nl
in

e
pr

ed
ic

tio
n

of
 jo

b
ru

nt
im

e

Fe
at

ur
e

gr
ou

p
Fe

at
ur

e
na

m
es

N
um

be
r o

f
fe

at
ur

es

U
se

r-r
eq

ue
ste

d
ru

nt
im

e
p̃
j (

re
qT

im
e)

1
A

ct
ua

l r
un

tim
e

an
d

C
PU

 fo
r t

he
 p

re
vi

ou
sly

 c
om

pl
et

ed
 jo

bs
 fr

om
 th

e
sa

m
e

us
er

la
st,

 b
efl

as
t,

be
fla

st2
, l

as
tc

pu
4

M
ax

im
um

 ru
nt

im
e

an
d

C
PU

 fo
r t

he
 p

re
vi

ou
sly

 c
om

pl
et

ed
 jo

bs
 fr

om
 th

e
sa

m
e

us
er

m
ax

rt,
 m

ax
cp

u
2

Se
as

on
al

ity
 fe

at
ur

es
to

d1
, t

od
2,

 d
ow

1,
 d

ow
2

4
A

ve
ra

ge
 a

nd
 st

an
da

rd
 d

ev
ia

tio
n

of
 ru

nt
im

e
an

d
C

PU
 o

f t
he

 jo
bs

 fr
om

 th
e

sa
m

e
us

er
m

ea
nr

t,
std

rt,
 m

ea
nc

pu
, s

td
cp

u
4

N
um

be
r o

f j
ob

s c
ur

re
nt

ly
 ru

nn
in

g
N

um
-c

ur
re

nt
1

Lo
ng

es
t r

un
ni

ng
 ti

m
e

of
 th

e
us

er
’s

 c
ur

re
nt

ly
 ru

nn
in

g
jo

b
Lo

ng
es

t
1

Ti
m

e
el

ap
se

d
si

nc
e

la
st

jo
b

co
m

pl
et

io
n

fro
m

 th
e

sa
m

e
us

er
B

re
ak

-ti
m

e
1

1 3

A hybrid scheduling platform: a runtime prediction…

Ta
bl

e
2

 F
ea

tu
re

s c
on

si
de

re
d

fo
r o

ur
 p

re
di

ct
io

n
re

lia
bi

lit
y

es
tim

at
io

n
ap

pr
oa

ch

Fe
at

ur
e

gr
ou

p
Fe

at
ur

e
na

m
es

N
um

be
r o

f
fe

at
ur

es

U
se

r-r
eq

ue
ste

d
ru

nt
im

e
p̃
j (

re
qT

im
e)

1
A

ct
ua

l r
un

tim
e

an
d

C
PU

 fo
r t

he
 p

re
vi

ou
sly

 c
om

pl
et

ed
 jo

bs
 fr

om
 th

e
sa

m
e

us
er

la
st,

 b
efl

as
t,

be
fla

st2
, l

as
tc

pu
4

M
ax

im
um

 ru
nt

im
e

an
d

C
PU

 fo
r t

he
 p

re
vi

ou
sly

 c
om

pl
et

ed
 jo

bs
 fr

om
 th

e
sa

m
e

us
er

m
ax

rt,
 m

ax
cp

u
2

Se
as

on
al

ity
 fe

at
ur

es
to

d1
, t

od
2,

 d
ow

1,
 d

ow
2

4
A

ve
ra

ge
 a

nd
 st

an
da

rd
 d

ev
ia

tio
n

of
 ru

nt
im

e
an

d
C

PU
 o

f t
he

 jo
bs

 fr
om

 th
e

sa
m

e
us

er
m

ea
nr

t,
std

rt,
 m

ea
nc

pu
, s

td
cp

u
4

Th
e

nu
m

be
r o

f c
om

pl
et

ed
 jo

bs
 fr

om
 th

e
sa

m
e

us
er

pr
ev

us
er

1

 M. Naghshnejad, M. Singhal

1 3

model is used to estimate the runtime prediction accuracy of the newly submit-
ted jobs. In Fig. 8, the prediction reliability outputs accuracy estimation value
for job i, ̂acci , using feature vectors fi = {z1i,… , zki, p̂i}.

Gradient boosting tree regressor is a prediction approach that ensembles
regression decision trees with gradient boosting [38]. In gradient boosting, a
model is built in a stage-wise fashion. In each stage, the existing model is boosted
by the optimization of an arbitrary differentiable loss function. In the gradient
boosting algorithm, in each stage, a tree is built based on the residuals from the
tree in the previous stage. Basically, in each stage, a new gradient tree is fitted
into residual values. It is important to note that at each stage, randomized sam-
ples of training data are chosen without substitution to avoid the risk of overfit-
ting [40]. Algorithm 1 shows the procedure to find gradient boosting regression
tree predictor ̃meta for input F. The algorithm has training set of k-dimensional
input features of size N denoted as F = {f1, f2,… , fN} and their corresponding
target accuracy values ACC = {acc1,… , accN} . As the first step, a decision tree
meta0(F) is fitted to F and ACC . Namely, the features to branch upon at each level
of the tree as well as the threshold to make the decision are found by solving an
optimization problem [41]. Using the trained decision tree, give us the ability to
find a decision region of feature space for a new data point. The predicted target
value for a new data point is predicted by averaging the runtime of the applica-
tions in the same subregion. Then, in each stage, the gradient of the residuals of
predictions are calculated, and a regression tree is fitted to this gradient to find
Rjm decision regions. After calculating the multiplier for each gradient residual
subtree and adding the weighted sum of subtrees to the previous regression tree,
the stage is complete. The routine is repeated for a tunable number of stages.

Fig. 7 Prediction reliability estimation machine is trained using features of completed jobs
fi = {z1i,… , zki} and their corresponding prediction accuracy values acci

Fig. 8 The trained reliability estimation machine is used to predict the accuracy for newly submitted jobs

1 3

A hybrid scheduling platform: a runtime prediction…

In Fig. 9, the relative importance of the most important features is presented. The
most important feature is assumed as 100% , and all other feature importance factors
are scaled to [0, 100]. The value of runtime for the previously completed job from
the same user has the most influence on the predictability of the runtime for the
current job. We see that the requested runtime by users and the runtime for the job
before the last job from the same user are the second and third important features.
The features names are presented in Table 2.

Fig. 9 Feature importances for meta-learning model are shown

 M. Naghshnejad, M. Singhal

1 3

Correlation of estimated accuracy values with the actual accuracy values has been
used to measure the goodness of fit for meta-learning approaches in the literature [42].
In Table 3, the correlation of actual runtime accuracies and estimated accuracies are
compared with CNK [42–44] and decision tree regressor. We observe that gradient
boosting tree meta-learning estimation of accuracy has the highest correlation with
actual prediction accuracy among our experimented machine learning algorithms.

5 Evaluating the performance of our proposed hybrid scheduling
platform

The use of benchmark datasets rather than in-house datasets provides repeatability
of experiments and eases comparison of the results of the researches. One challenge
in studying HPC applications and their scheduling is the scarcity of public data-
sets [45]. During the previous two decades, some national laboratories have pub-
lished the traces of their high-performance computing clusters. A collection of these
datasets are cleaned and benchmarked as parallel workload dataset [17]. As parallel
workload dataset [17] is the current benchmark for HPC scheduling [16, 46, 47] and
runtime prediction [48], we use three traces from this dataset. They were consistent
with our problem statement in terms of inputs we require for each application and
the specification of the scheduling problem. More specifically, our chosen datasets
were collected from non-preemptive scheduling clusters, which is consistent with
our problem statement. In addition, the set of available features we require for our
ML-unit is provided in these datasets. Additionally, these datasets were commonly
used in published research work and facilitate the comparison of results. HPC2N is
a trace log containing three and a half years worth of accounting records from the
High-Performance Computing Center North (HPC2N) in Sweden. LLNL ATLAS
is a trace log from ATLAS cluster in Lawrence Livermore National Lab, and ANL
Intrepid is from Intrepid cluster in Argonne National Lab. SDSC trace is from the
SDSC Blue Horizon in San Diego Super Computer.

5.1 Event‑driven simulation

We simulate the scheduling of traces using the open-source event-driven simulation
package, Alea2 [49]. Alea2 simulator is based on the GridSim simulation toolkit
[50]. Alea2 extends Gridsim to provide a simulation environment that supports sim-
ulation of varying job scheduling problems [19, 49]. Alea2 uses a centralized job

Table 3 Correlation of
estimated accuracies with actual
accuracies for gradient boosting
tree is compared with decision
tree and CNK

Gradient boosting
tree

Decision tree CNK

HPC2N 0.84 0.77 0.44
SDSC 0.81 0.75 0.53
ANL 0.79 0.68 0.47
LLNL 0.78 0.66 0.50

1 3

A hybrid scheduling platform: a runtime prediction…

scheduler which uses scheduling techniques for schedule generation. For priority-
based scheduling algorithms, Alea2 central scheduler, jobs are submitted according
to their submission time in the trace. An ordered queue of jobs is maintained and is
updated in the event of job submission or job termination. Once started, jobs run to
completion, implying that the central scheduler is not allowed to preempt or migrate
the tasks. We have added an online regression method as a machine learning-based
prediction module and gradient boosting tree as job runtime prediction accuracy
estimation to the Alea2 package. At the time of each job submission, the prediction
module calculates the prediction of runtime and returns the runtime value to the
central scheduler.

5.2 Comparison with existing scheduling approaches

The aim of this section is to compare the performance and efficiency of our pro-
posed hybrid scheduling algorithm with common scheduling algorithms in a real-
world scenario. For this purpose, we implemented a hybrid scheduling platform, as
described in Sect. 4. To implement the platform, we extended the existing prediction
module in Alea2 with implementing the online normalized regression as described
in [19] as well as a module for performing reliability estimation with gradient boost-
ing tree regression. A thin module of hybridization parameter calculator was also
added to Alea2 repository. In the scheduling module, hybrid scheduler as well as
FCFS backfilling with SVF and online-SVF was added.

In the performance and efficiency comparison experiments, hybrid scheduling
algorithm was compared with two backfilling approaches as well as two plan-based
scheduling algorithms on production traces. FCFS-BF1 denotes backfilling with SJF
as used by [13, 19]. FCFS-BF2 is similar to FCFS-BF1 but uses smallest volume
first (SVF) rule to choose jobs to backfill. Plan-based1 is the dynamic version of
SJF as described in Sect. 2.1. Plan-based2 is dynamic version of SVF [16].

Waiting time and bounded slow-down are among the most used criteria for evalu-
ating the performance of the scheduling algorithm, and utilization is a criterion to
evaluate the resource usage efficiency of the scheduling algorithm [13]. The criteria
are listed below.

Bounded slow-down The slow-down of a job is the maximum ratio of job response
time on the loaded system to its runtime on a dedicated system. To calculate slow-
down, we calculate the ratio of response time plus wait time to the response time.
The slow-down value is often more than one. The lower the value of the slow-down
in a clustering environment indicates better scheduling of the applications. As
using slow-down formula, the short jobs with near-zero response time will have a
high value of slow-down with a small wait time, Tsafrir et al. [13] have proposed
bounded slow-down. Bounded slow-down substitutes the runtime in the dividend by
the maximum of a constant value, � and the response time.

(6)blsd = max
j∈J

(
waitj + pj

max
(
pj, �

)
)

 M. Naghshnejad, M. Singhal

1 3

Average wait time The average wait time measures the average of the time between
job submission and the job start time on the system overall jobs.

Utilization The ratio of total node hours used by the scheduling algorithm to the
total nod hours elapsed from the time the first job was submitted to the system.

We used hybrid platform to schedule jobs of four different traces from parallel
workload dataset and compared the three criteria explained above with two back-
filling and two plan-based scheduling approaches: FCFS and backfilling algo-
rithms, FCFS-BF1 and FCFS-BF2, as well as plan-based scheduling algorithms,
Plan-based1 and Plan-based2. The results of these experiments are shown in
Figs. 10, 11 and 12. In all these figures, the hybrid scheduling platform is denoted
as HS.

In the first set of experiments, we compared the wait times. In Fig. 10, wait
times of our hybrid platform is compared with the two plan-based and backfilling
algorithms. Plan-based schedulers perform slightly better than backfilling algo-
rithms, but our hybrid platform performs significantly better than both categories
of schedulers (about 20%).

In Fig. 11, bounded slow-down improvement of hybrid platform is compared with
backfilling and plan-based approaches. We can see that the slow-down is consider-
ably lower than the plan-based and backfilling schedulers. In fact, we can see that
the hybrid platform’s bounded slow-down is more than 50% lower than backfilling
and plan-based methods. The improved bounded slow-down and average wait time
in the hybrid platform are because the hybrid platform uses plan-based scheduling
for jobs identified as predictable and backfills the jobs identified as unpredictable on
remaining available resources. This curated choice of scheduling algorithm results
in lower slow-down and average wait time and better performance.

Fig. 10 Average wait time values of HS is compared to FCFS, SVF-BF, SJF-BF, SVF and SJF. HS has
the lowest average wait time

1 3

A hybrid scheduling platform: a runtime prediction…

In Fig. 12, the utilization improvement of the hybrid platform is compared with
backfilling and plan-based approaches. The utilization is reported as an improvement
over the simple SJF scheduling. We can see in Fig. 12 that utilization improvement
is also significantly greater than the backfilling and plan-based approaches. The bet-
ter utilization of hybrid also shows that using predictability information about the
jobs and choosing the scheduling algorithm accordingly leads to better packing of

Fig. 11 Bounded-slow-down values of HS is compared with SVF-BF, SJF-BF, SVF and SJF. HS has the
lowest bounded slow-down

Fig. 12 Utilization percentage of HS is compared with SVF-BF, SJF-BF, SVF and SJF. HS has the high-
est utilization

 M. Naghshnejad, M. Singhal

1 3

jobs into resources than completely relying on predicted runtimes in plan-based
algorithms or ignoring job runtimes in backfilling algorithms.

5.3 The effect of clairvoyance on hybrid scheduler

In Table 4, we compare the bounded slow-down of hybrid platform with best per-
forming backfilling and plan-based algorithms both in the clairvoyant case where
accurate runtime values are available at the time of job submission as well as in
the non-clairvoyant case where runtimes are predicted with system-generated
approaches. In the clairvoyant scenario, as expected, plan-based scheduling has
lower bounded slow-down than backfilling scheduling. This is because plan-based
scheduling determines the order of jobs based on their runtime values. When the
accurate values of runtime are available, plan-based scheduling performs best.
However, in the more realistic situations, where runtime values are predicted using
machine learning approaches and our proposed accuracy estimation is used to
decide about the scheduling approach of each job, our proposed hybrid platform has
the lowest bounded slow-down.

5.4 Parameter selection for hybrid scheduling

As discussed in Sect. 4, the portion that we allocate for predictable jobs (�0) needs
to be determined. To study the effect of choosing different values of �0 , we repeated
our simulations of hybrid platform scheduling with different values of �0 on HPC2N
trace and measured the values of average wait time. Our simulations showed that
with all values of �0 between 0.3 and 0.8 hybrid scheduling outperformed backfill-
ing and plan-based scheduling algorithms. In Fig. 13, we have plotted average wait
times for different values of �0 . We can see that the initialization of �0 = 0.6 resulted
in the best performance. We repeated the simulations for 20 times to ensure the reli-
ability of our results.

6 Conclusion

The goal of this paper was to design a scheduling platform to handle inaccuracies
in workload runtimes. We designed a novel scheduling platform that hybridizes
two popular classes of scheduling algorithms, namely backfilling and plan-based

Table 4 Bounded-slow-down
comparison with Clairvoyant
problem setting

Clairvoyant Non-clairvoyant

Backfilling Plan-based Backfilling Plan-based Hybrid
plat-
form

SDSC 40 20 50 45 25
ANL 24 11 24 22 14

1 3

A hybrid scheduling platform: a runtime prediction…

scheduling. Our design was motivated by the difference in sensitivity of these two
classes of scheduling algorithms to runtime prediction accuracy. Our platform is
designed based on a deep understanding of the characteristics of plan-based and
backfilling scheduling algorithms. Our hybrid scheduling platform uses the estima-
tion of predictability of HPC application runtimes to choose an appropriate schedul-
ing algorithm for each specific application. Our proposed platform avoids resource
fragmentation by adaptively and dynamically changing the portion of computation
resources that plan-based scheduler uses. This portion is calculated based on the
resource requirement ratio of recently submitted jobs with reliable runtime predic-
tion. Our meta-learning solution uses the power to predict the level of uncertainty
of job runtimes to better schedule HPC applications on available computation
resources. Our extensive trace-based experiments show significant improvement in
the performance and utilization of HPC workload traces.

While our present work serves as a demonstration of using prediction reliability
to improve performance and utilization of HPC scheduling platforms, there are sev-
eral directions for taking our idea further. A natural direction is to implement the
proposed platform in scheduling packages such as Cobalt [12]. Another direction is
to extend the proposed approaches to predict reliability for resource consumption of
data center workloads.

References

 1. Lee CB, Schwartzman Y, Hardy J, Snavely A (2004) Are user runtime estimates inherently inaccu-
rate? In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer, pp 253–263

 2. Tang W, Lan Z, Desai N, Buettner D (2009) Fault-aware, utility-based job scheduling on blue,
gene/p systems. In: 2009 IEEE International Conference on Cluster Computing and Workshops.
IEEE, pp 1–10

Fig. 13 Comparing average wait time of hybrid platform on HPC2N dataset with various initial alpha
(�0). It can be seen that with �0 = 0.6 hybrid scheduling platform has its best average wait time

 M. Naghshnejad, M. Singhal

1 3

 3. Fan Y, Rich P, Allcock WE, Papka ME, Lan Z (2017) Trade-off between prediction accuracy and
underestimation rate in job runtime estimates. In: 2017 IEEE International Conference on Clus-
ter Computing (CLUSTER). IEEE, pp 530–540

 4. Tchernykh A, Schwiegelsohn U, Alexandrov V, Talbi E-G (2015) Towards understanding uncer-
tainty in cloud computing resource provisioning. Procedia Comput Sci 51:1772–1781

 5. Zheng X, Zhou Z, Yang X, Lan Z, Wang J (2016) Exploring plan-based scheduling for large-
scale computing systems. In: 2016 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, pp 259–268

 6. Bosnić Z, Kononenko I (2008) Estimation of individual prediction reliability using the local sen-
sitivity analysis. Appl Intell 29(3):187–203

 7. Hovestadt M, Kao O, Keller A, Streit A (2003) Scheduling in HPC resource management sys-
tems: queuing vs. planning. In: Workshop on Job Scheduling Strategies for Parallel Processing.
Springer, pp 1–20

 8. Srinivasan S, Kettimuthu R, Subramani V, Sadayappan P (2002) Characterization of backfilling
strategies for parallel job scheduling. In: International Conference on Parallel Processing Work-
shops, 2002. Proceedings. IEEE, pp 514–519

 9. Skovira J, Chan W, Zhou H, Lifka D (1996) The easy loadleveler API project. In: Workshop on
Job Scheduling Strategies for Parallel Processing. Springer, pp 41–47

 10. Talby D, Feitelson DG (1999) Supporting priorities and improving utilization of the IBM SP
scheduler using slack-based backfilling. In: 13th International and 10th Symposium on Parallel
and Distributed Processing Parallel Processing, 1999. 1999 IPPS/SPDP. Proceedings. IEEE, pp
513–517

 11. Yoo AB, Jette MA, Grondona M (2003) Slurm: simple linux utility for resource management. In:
Workshop on Job Scheduling Strategies for Parallel Processing. Springer, pp 44–60

 12. Desai N (2005) Cobalt: an open source platform for HPC system software research. In: Edin-
burgh BG/L System Software Workshop, pp 803–820

 13. Tsafrir D, Etsion Y, Feitelson DG (2007) Backfilling using system-generated predictions rather
than user runtime estimates. IEEE Trans Parallel Distrib Syst 18(6):789–803

 14. Xhafa F, Carretero J, Dorronsoro B, Alba E (2012) A tabu search algorithm for scheduling inde-
pendent jobs in computational grids. Comput Inform 28(2):237–250

 15. Klusáček D, Chlumskỳ V, Rudová H (2015) Planning and optimization in torque resource man-
ager. In: Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing. ACM, pp 203–206

 16. Im S, Naghshnejad M, Singhal M (2016) Scheduling jobs with non-uniform demands on mul-
tiple servers without interruption. In: IEEE INFOCOM 2016—The 35th Annual IEEE Interna-
tional Conference on Computer Communications, April, pp 1–9

 17. Parallel workloads archive. http://cs.huji.ac.il/labs/paral lel/workl oads. Accessed 2015-07-01
 18. Sonmez O, Yigitbasi N, Iosup A, Epema D (2009) Trace-based evaluation of job runtime and

queue wait time predictions in grids. In: Proceedings of the 18th ACM International Symposium
on High Performance Distributed Computing. ACM, pp 111–120

 19. Gaussier E, Glesser D, Reis V, Trystram D (2015) Improving backfilling by using machine learn-
ing to predict running times. In: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. ACM, p 64

 20. Bhimani J, Mi N, Leeser M, Yang Z (2017) Fim: performance prediction for parallel computa-
tion in iterative data processing applications. In: 2017 IEEE 10th International Conference on
Cloud Computing (CLOUD). IEEE, pp 359–366

 21. Obaida MA, Liu J, Chennupati G, Santhi N, Eidenbenz S (2018) Parallel application perfor-
mance prediction using analysis based models and HPC simulations. In: Proceedings of the 2018
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. ACM, pp 49–59

 22. Naghshnejad M, Singhal M (2018) Adaptive online runtime prediction to improve HPC appli-
cations latency in cloud. In: 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, pp 762–769

 23. Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty
estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp
6402–6413

 24. Gibbons R (1997) A historical application profiler for use by parallel schedulers. In: Workshop
on Job Scheduling Strategies for Parallel Processing. Springer, pp 58–77

http://cs.huji.ac.il/labs/parallel/workloads

1 3

A hybrid scheduling platform: a runtime prediction…

 25. Tang W, Desai N, Buettner D, Lan Z (2010) Analyzing and adjusting user runtime estimates to
improve job scheduling on the blue gene/p. In: 2010 IEEE International Symposium on Parallel
& Distributed Processing (IPDPS). IEEE, pp 1–11

 26. Smith W, Foster I, Taylor V (1998) Predicting application run times using historical information.
In: Feitelson D G, Rudolph L (eds) Job scheduling strategies for parallel processing. Springer,
Berlin, pp 122–142

 27. Wyatt II MR, Herbein S, Gamblin T, Moody A, Ahn DH, Taufer M (2018) PRIONN: predicting
runtime and IO using neural networks. In: Proceedings of the 47th International Conference on
Parallel Processing. ACM, p 46

 28. Nissimov A, Feitelson DG (2007) Probabilistic backfilling. In: Workshop on Job Scheduling
Strategies for Parallel Processing. Springer, pp 102–115

 29. Mendes CL, Reed DA (1998) Integrated compilation and scalability analysis for parallel sys-
tems. In: Proceedings. 1998 International Conference on Parallel Architectures and Compilation
Techniques, 1998. IEEE, pp 385–392

 30. Schopf JM, Berman F (1999) Using stochastic intervals to predict application behavior on con-
tended resources. In: Proceedings. Fourth International Symposium on Parallel Architectures,
Algorithms, and Networks, 1999 (I-SPAN’99). IEEE, pp 344–349

 31. Matsunaga A, Fortes JA (2010) On the use of machine learning to predict the time and resources
consumed by applications. In: Proceedings of the 2010 10th IEEE/ACM International Confer-
ence on Cluster, Cloud and Grid Computing. IEEE Computer Society, pp 495–504

 32. Dimitriadou S, Karatza H (2010) Job scheduling in a distributed system using backfilling with
inaccurate runtime computations. In: 2010 International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS). IEEE, pp 329–336

 33. Ramírez-Velarde R, Tchernykh A, Barba-Jimenez C, Hirales-Carbajal A, Nolazco-Flores J
(2017) Adaptive resource allocation with job runtime uncertainty. J Grid Comput 15(4):415–434

 34. Ilyushkin A, Epema D (2018) The impact of task runtime estimate accuracy on scheduling work-
loads of workflows. In: 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, pp 331–341

 35. Hazan E et al (2016) Introduction to online convex optimization. Found Trends Optim
2(3–4):157–325

 36. Ross S, Mineiro P, Langford J (2013) Normalized online learning. arXiv :1305.6646
 37. Vanschoren J (2019) Meta-learning. In: Hutter F, Kotthoff L, Vanschoren J (eds) Automated

machine learning: methods, systems, challenges. Springer, Cham, pp 35–61. https ://doi.
org/10.1007/978-3-030-05318 -5_2

 38. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat
29(5):1189–1232

 39. Chen T, Guestrin C (2016) Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp
785–794

 40. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378
 41. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining,

inference, and prediction, 2nd edn. Springer series in statistics. Springer, Berlin
 42. Bosnić Z, Kononenko I (2008) Comparison of approaches for estimating reliability of individual

regression predictions. Data Knowl Eng 67(3):504–516
 43. Amvrosiadis G, Park JW, Ganger GR, Gibson GA, Baseman E, DeBardeleben N (2018) On the

diversity of cluster workloads and its impact on research results. In: 2018 USENIX Annual Tech-
nical Conference (USENIX ATC 18), pp 533–546

 44. Feitelson DG (2015) From repeatability to reproducibility and corroboration. ACM SIGOPS
Oper Syst Rev 49(1):3–11

 45. Mann ZÁ (2015) Allocation of virtual machines in cloud data centersa survey of problem models
and optimization algorithms. ACM Comput Surv: CSUR 48(1):11

 46. Pinedo ML (2012) Scheduling: theory, algorithms, and systems. Springer, Berlin
 47. Augonnet C, Thibault S, Namyst R, Wacrenier P-A (2011) Starpu: a unified platform for task

scheduling on heterogeneous multicore architectures. Concurr Comput Pract Exp 23(2):187–198
 48. Witt C, Bux M, Gusew W, Leser U (2019) Predictive performance modeling for distributed batch

processing using black box monitoring and machine learning. Inf Syst

http://arxiv.org/abs/1305.6646
https://doi.org/10.1007/978-3-030-05318-5_2
https://doi.org/10.1007/978-3-030-05318-5_2

 M. Naghshnejad, M. Singhal

1 3

 49. Klusáček D, Rudová H (2010) Alea 2: job scheduling simulator. In: Proceedings of the 3rd Inter-
national ICST Conference on Simulation Tools and Techniques. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), p 61

 50. Buyya R, Murshed M (2002) Gridsim: a toolkit for the modeling and simulation of distrib-
uted resource management and scheduling for grid computing. Concurr Comput Pract Exp
14(13–15):1175–1220

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A hybrid scheduling platform: a runtime prediction reliability aware scheduling platform to improve HPC scheduling performance
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Paper organization

	2 Background and problem description
	2.1 Common scheduling algorithms for HPC workloads
	2.1.1 FCFS scheduling with backfilling
	2.1.2 Plan-based scheduling algorithms

	2.2 Sensitivity to job runtime accuracy
	2.3 Job runtime prediction reliability estimation
	2.4 Job runtime prediction reliability estimation
	2.5 Formulation of the problem

	3 Related work
	4 Proposed hybrid scheduling platform
	4.1 Proposed design
	4.2 The central scheduler
	4.3 The hybridization parameter adjusting unit
	4.4 The ML-unit
	4.4.1 Online job runtime prediction
	4.4.2 A meta-learning approach to estimate runtime prediction accuracy

	5 Evaluating the performance of our proposed hybrid scheduling platform
	5.1 Event-driven simulation
	5.2 Comparison with existing scheduling approaches
	5.3 The effect of clairvoyance on hybrid scheduler
	5.4 Parameter selection for hybrid scheduling

	6 Conclusion
	References

