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Abstract
The performance of scheduling algorithms for HPC jobs highly depends on the 
accuracy of job runtime values. Prior research has established that neither user-pro-
vided runtimes nor system-generated runtime predictions are accurate. We propose 
a new scheduling platform that performs well in spite of runtime uncertainties. The 
key observation that we use for building our platform is the fact that two impor-
tant classes of scheduling strategies (backfilling and plan based) differ in terms of 
sensitivity to runtime accuracy. We first confirm this observation by performing 
trace-based simulations to characterize the sensitivity of different scheduling strate-
gies to job runtime accuracy. We then apply gradient boosting tree regression as a 
meta-learning approach to estimate the reliability of the system-generated job runt-
imes. The estimated prediction reliability of job runtimes is then used to choose a 
specific class of scheduling algorithm. Our hybrid scheduling platform uses a plan-
based scheduling strategy for jobs with high expected runtime accuracy and back-
fills the remaining jobs on top of the planned jobs. While resource sharing is used 
to minimize fragmentation of resources, a specific ratio of CPU cores is reserved 
for backfilling of less predictable jobs to avoid starvation of these jobs. This ratio 
is adapted dynamically based on the resource requirement ratio of predictable jobs 
among recently submitted jobs. We perform extensive trace-driven simulations on 
real-world production traces to show that our hybrid scheduling platform outper-
forms both pure backfilling and pure plan-based scheduling algorithms.
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Real knowledge is to know the extent of one’s ignorance.
Confucius.

1 Introduction

With ever increasing usage of HPC clusters by scientific researchers, the diversity 
of applications submitted to HPC clusters is non-deniable. This diversity requires 
smarter scheduling strategies to keep resource usage efficient while meeting the 
cluster customers’ preferred performance goals. The management of job deploy-
ment and scheduling is performed by job management systems in HPC clusters. Job 
management systems for HPC clusters need to perform resource allocation and job 
scheduling cleverly to avoid capital and operational expenses for operating the clus-
ter. Extensive research has been done in designing scheduling platforms with bet-
ter performance and higher efficiency. However, most of these algorithms require 
an accurate value for job runtime. It is well known that user-provided runtime esti-
mations are far from accurate [1–3]. Several systems-generated runtime prediction 
approaches based on the runtime of previously executed jobs have been proposed. 
However, due to the inherent uncertainties in job runtime values, perfect prediction 
of runtimes is not possible [4]. To the best of our knowledge, no reliability estima-
tion for individual runtime predictions has been done in the past. Our studies on 
HPC trace data show that although prediction approaches predict runtimes for some 
jobs very accurately, they provide inaccurate predictions for a subset of submission 
jobs. The reliability of individual job predictions provides valuable information to 
be used by scheduling platforms. We use a supervised machine learning approach to 
estimate the reliability of each job runtime prediction. In other words, we determine 
if a runtime prediction for each new job is reliable using a machine learning model 
trained on previously completed jobs. We then use our estimations of the accuracy to 
design a scheduling platform that deploys an appropriate scheduling strategy based 
on the predictability of the runtime for each job. For that purpose, we first conduct 
experiments in multiple HPC trace datasets and measure the sensitivity of different 
scheduling algorithms to job runtime accuracy. Having done so, we design a reli-
ability estimation approach to determine the accuracy estimates, which is a valuable 
input for our scheduling platform.

To be able to pick the best scheduling strategy based on the reliability of job runt-
ime prediction, it is worthwhile to study the sensitivity of job scheduling policies 
to job runtime accuracy. There are two well-known groups of scheduling policies 
for HPC jobs: backfilling policies and plan-based policies. While backfilling tries to 
fill the free resources created by first come first served (FCFS) ordering jobs, plan-
based scheduling routinely finds the optimal/near-optimal ordering of jobs to fill the 
resources. In backfilling, the initial ordering of jobs limits the feasibility of resources 
for later shorter jobs even though backfilling is far from optimal. The popularity of 
backfilling is due to its acceptable performance with inaccurate runtime prediction. 
However, with the advent of more accurate online prediction models, more plan-
based approaches have been proposed [5]. One may assume that with more accu-
rate prediction approaches, plan-based scheduling algorithms perform best. This is 
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not true. One issue about using machine learning approaches for runtime predic-
tion is the fact that machine learning models are trained based on minimizing a loss 
function. The loss function often minimizes average error over all training points 
and does not necessarily perform well for all individual data points [6]. As a result, 
machine learning prediction approaches may not make accurate predictions for a 
large subset of submitted applications in an HPC cluster. The question is whether 
we can determine if a machine learning model accurately predicts the runtime for a 
specific newly submitted job. In Sect. 4.4.2, we see that we actually can have accu-
rate estimations of runtime prediction accuracy values for job runtimes. We call this 
estimation the prediction reliability estimation following some previous works in 
machine learning literature [6]. Using the reliability estimation, we categorize jobs 
into two categories of predictable and unpredictable jobs and design our hybrid 
scheduling platform around these two categories of jobs.

1.1  Contributions

The research presented in this paper addressed three questions. (1) Do different 
scheduling strategies differ in sensitivity to prediction accuracy? (2) Can we esti-
mate the prediction reliability of individual jobs? (3) Can we improve the perfor-
mance and efficiency of scheduling HPC clusters with the knowledge of the answer 
to the first two questions? To answer the first question, we performed sensitivity 
experiments with scheduling strategies from the two broad groups of backfilling 
and plan-based. We observed that backfilling strategies are less sensitive to runt-
ime accuracy. We also observed that the performance of plan-based strategies sig-
nificantly improves with more accurate runtime values. We then studied prediction 
reliability and experimented existing approaches in machine learning literature for 
estimating prediction reliability for job runtime values. Based on our experiments, 
we designed a supervised model that estimates the accuracy of runtime using gradi-
ent boosting tree regression. The Pearson correlation for our estimated accuracies 
and the actual accuracy is 0.84 on our test data. We then designed a hybrid sched-
uling platform that picks a policy for scheduling each job based on the reliability 
of its runtime prediction. Our platform first schedules the predictable jobs using a 
plan-based scheduling strategy and then backfills the less predictable jobs on the 
top. To avoid starvation of resources, a dynamically adaptive portion of resources 
is reserved for backfilling jobs. However, backfilled jobs can use all the remain-
ing available resources to avoid resource fragmentation. Our extensive trace-based 
simulations show that our platform outperforms each of the two strategies deployed 
individually in terms of performance and efficiency.

1.2  Paper organization

We start by presenting the problem and related background in Sect. 2. We review 
related work for HPC scheduling as well as prediction reliability estimation in 
machine learning literature in Sect.  3. We present our approach for reliability 
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estimation and hybrid scheduling platform in Sect.  4. We present our trace-based 
experiments with actual data in Sect. 5. We conclude our work in Sect. 6.

2  Background and problem description

In this paper, we are interested in a solution for improving the performance of sched-
uling jobs in HPC clusters in the existence of job runtime inaccuracies. The HPC 
applications are submitted to a central application management system. The job 
management system decides the allocation of resources to the applications. As the 
resources are finite, the applications may need to wait until they acquire resources. 
The users are often asked to provide running time and the required CPU and mem-
ory for their applications. It is well known that the users submit an overestimated 
runtime mostly because the application manager kills the applications if they take 
longer than the user-estimated runtime [7].

In order to better present the problem, we first define our notion of a job in HPC 
cluster: a job or application  j is considered with specific submission time and 
resource requirement. At the time of submission, a value of runtime and resource 
requirement is submitted by the user. There are n independent jobs (indexed by inte-
gers), where application j has the following characteristic:

• Submission time: rj
• Resource requirement: dj
• Actual running time: pj
• Requested running time: p̂j.
• Additional features (descriptors) including the user that submitted the applica-

tion, the time of the day the application submitted, etc.

In Fig. 1, an application j is illustrated as a solid rectangle on the right, with length 
equal to actual runtime ( pj ) and resource requirement equal to dj . In the figure at left, 
the abstraction of resources in the HPC cluster is illustrated. The vertical dimension 
represents the total resources in the system, and the horizontal axis denotes time. 
In this section, we first present a background on scheduling approaches for HPC 
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Fig. 1  Each job j is illustrated as a two-dimensional rectangle with height equal to its demand dj and 
width equal to its size pj . Each server has the unit capacity. Jobs can run simultaneously on each server 
as long as the total demand/height of running jobs do not exceed the server’s capacity
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clusters and introduce the issue of uncertainty in HPC workload traces. We then pre-
sent the formulation of the problem we study in this paper.

2.1  Common scheduling algorithms for HPC workloads

FCFS is the most well-known scheduling algorithms for HPC jobs. FCFS schedules 
jobs in order of their submission. FCFS is a list scheduling algorithm that prior-
itizes jobs based on their submission time. In list scheduling algorithms, also known 
as queue-based scheduling algorithms, if there are enough available resources, 
resources are allocated to the submitted job and the job starts to process. Otherwise, 
the job is kept in a queue. Using FCFS does not consider the geometry of jobs to 
pack them tightly into resources. To improve the performance of FCFS, two strate-
gies have been proposed: backfilling (FCFS-BF) [8] and plan-based scheduling [5] 
algorithms. In Fig. 2, an FCFS backfilling scheduling strategy is compared with a 
plan-based scheduling algorithm. While backfilling backfills the free resources avail-
able after FCFS scheduling with smaller jobs from the back of the queue, plan-based 
scheduling uses the runtime of jobs in the queue to find the near-optimal ordering 
jobs before assigning the jobs. As these two groups of scheduling algorithms are the 
building blocks of our hybrid scheduling platform, we elaborate their characteristics 
in the following subsections.

2.1.1  FCFS scheduling with backfilling

In FCFS with backfilling, jobs are prioritized based on their submission time to the 
system. Several variety of backfilling algorithms are proposed including EASY [9], 
conservative [8] and slack backfilling [10] algorithms. Although FCFS only relies on 
submission time to order the jobs, all these backfilling approaches rely on runtime 

Fig. 2  The comparison of a plan-based scheduling algorithm (online-SJF) and a backfilling scheduling 
algorithm (FCFS-SJF) algorithms on an example of seven jobs
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values to make the backfilling decision. Most of the resource management systems 
deployed in HPC clusters including SLURM [11], Cobalt [12], IBM LoadLeveler 
[9] use FCFS with backfilling. FCFS scheduling algorithms are used mainly due 
to their simplicity and scalability as well as stability to inaccurate input runtimes. 
The EASY-backfilling algorithm acts like a greedy first fit scheduler in the case that 
the next job in the queue has more resource demand than the available resources. It 
takes the first job from the back of the queue and fits into the available space.

One important observation is that as EASY-backfilling tries to backfill jobs 
greedily into available resources created by the FCFS ordering of jobs, its perfor-
mance does not degrade substantially with inaccurate runtime estimates. On the 
other hand, the performance of the EASY does not improve substantially with more 
accurate runtime values. FCFS-SJF was proposed in [13] to use the application runt-
ime for backfilling decision. In FCFS-SJF, the backfilled jobs are chosen in the order 
of increasing runtime and are commonly used in the works that propose more accu-
rate prediction approaches to runtime prediction as SJF-BF is more sensitive to runt-
ime prediction accuracy than EASY. We will also consider FCFS-SVF that orders 
jobs based on volume(multiplication of runtime and required CPU). FCFS-SJF 
and FCFS-SVF have some level of sensitivity to runtime accuracy, but still, have 
acceptable performance in the absence of accurate runtime prediction. In our experi-
ments, we use FCFS-SJF and FCFS-SVF as representatives of FCFS with backfill-
ing algorithms.

2.1.2  Plan‑based scheduling algorithms

On the other side of the scheduling algorithms spectrum are the plan-based algo-
rithms. Instead of deploying jobs immediately, plan-based approaches try to find a 
near-optimal ordering of jobs to optimize scheduling performance for a group of 
submitted jobs. The main issue with plan-based scheduling algorithms is the fact 
that their performance is highly sensitive to the accuracy of jobs’ runtime predic-
tions. As in real-world scenarios, user runtime estimates used for scheduling are not 
accurate; plan-based scheduling algorithms do not perform well. We study several 
plan-based and backfilling approaches and propose an adaptive hybrid scheduling 
platform. Our sensitivity analysis experiments in the next subsection show how 
plan-based work well with accurate and backfilling with inaccurate predictions. 
Plan-based scheduling algorithms try to search over the solution space to make the 
best scheduling decision for each job. As the problem is dynamic and jobs are sub-
mitted over time, the planning routine needs to be done periodically and based on 
the jobs already in the systems. Several plan-based scheduling policies have been 
proposed. Some policies propose a complete search over the solution space, and 
some propose local search to improve the computation overhead [5, 14, 15].

Although these methods claim to have better performance than backfilling sched-
uling methods, several issues make them less popular for cluster managers. First, for 
most of these approaches, the computational overhead for decision making makes 
them less favorable. Furthermore, they completely rely on job runtimes for their 
decisions and perform poorly if the runtimes are not accurate.
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In this paper, for the choice of plan-based strategy in our hybrid scheduling plat-
form, we use online priority-based scheduling algorithms. Online priority-based 
scheduling algorithms are the plan-based version of commonly used priority-based 
scheduling algorithms. Online priority-based scheduling algorithms have the high 
performance of plan-based scheduling algorithms on the availability of accurate 
runtime values while they have a low computational overhead. Shortest job first 
(SJF) algorithm is well known to have optimal performance in the offline case when 
one job is allowed to run at a time. In [16], authors proposed smallest volume first 
(SVF) as the two-dimensional extension of SJF that reaches near-optimal perfor-
mance in the offline case. In comparison with other plan-based scheduling, includ-
ing heuristic search algorithms, list-based scheduling algorithms are considerably 
faster. Online-SJF and online-SVF are dynamic. Similar to the other plan-based 
scheduling algorithms, new ordering is computed at the time of the system events. 
With using appropriate data structures like Heap, reordering the list takes constant 
time. Our experiments show that SVF outperforms SJF and other commonly used 
scheduling algorithms when accurate runtimes are provided. In this work, we use 
online-SVF as the plan-based scheduling algorithm and call it plan-based schedul-
ing in the rest of this paper.

2.2  Sensitivity to job runtime accuracy

To study the sensitivity of backfilling and plan-based schedulers, we studied four 
traces from parallel workload dataset [17] in detail. These datasets contain traces of 
applications submitted to HPC clusters. An immediate observation, as noted by sev-
eral previous works [13, 18], is inaccurate user estimates of job runtimes. In recent 
years, several prediction approaches are proposed [13, 19], and so some of them can 
predict application runtimes as accurate as 0.80. The question is how these more 
accurate predictions affect the scheduling performance for both customer satisfac-
tion criterion (performance) and cluster provider criterion (utilization). To answer 
this question, we perturbed the available traces to provide traces with variable runt-
ime prediction accuracy and simulated several scheduling algorithms discussed in 
the previous section to compare the scheduling algorithms regarding their sensitivity 
to accuracy. We also want to compare how different scheduling algorithms perform 
with more accurate runtimes. FCFS does not use runtime estimates and schedules 
jobs on the order of submission, so the average wait time of FCFS is not impacted 
by more accurate runtime prediction. The critical point to notice is the sensitivity of 
online-SJF and online-SVF to the accuracy of runtime. These two algorithms do not 
perform well with user-estimated runtimes, which are generally inaccurate.

Through our extensive trace-based simulations, we realized that plan-based 
scheduling algorithms are more sensitive to prediction accuracy than backfill-
ing algorithms. The good news is that they outperform backfilling algorithms if an 
almost accurate prediction is available (accuracy more than 0.60). We perturbed the 
existing traces from ANL, LLNL, HPC2N and SDSC to build trace datasets with 
0.20, 0.40, 0.60 and 0.80 runtime value accuracies and simulated backfilling and 
plan-based scheduling algorithms with the perturbed runtimes. The results of these 
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experiments are demonstrated in Fig.  3. We can see that for all four datasets, for 
accuracy level higher than a threshold (0.40–0.80), online-SVF outperforms all the 
other algorithms in terms of wait time.

2.3  Job runtime prediction reliability estimation

As discussed earlier, runtime values by users are far from accurate [13]. Several 
approaches have been proposed to generate more accurate runtime predictions based 
on available information about the job at the time of submission [20]. In [18], sev-
eral time-series-based approaches are used to predict job runtimes of incoming 
applications. A machine learning approach was proposed in [19] where the authors 
propose an online learning model that makes a prediction for each newly submitted 
job and updates the prediction model with newly available runtime after completion 
of each job. However, to the best of our knowledge, there has not been any study 
about confidence or reliability of runtime predictions for individual jobs. In some 
other works, including [20] specific information about the application is used by a 
machine learning model to predict its performance in HPC cluster. In [21], authors 
use source code content to analyze the performance of the application on a simu-
lated HPC infrastructure. In [22], authors propose state-space models to predict 
runtime of HPC applications. One important issue in using predicted runtimes is 
the fact that for some jobs, the prediction accuracy is low. Hence, there is the need 

Fig. 3  Wait times of FCFS, FCFS-SJF, FCFS-SVF, online-SJF and online-SVF are plotted for traces 
with different accuracy levels
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to measure the expected prediction accuracy for specific jobs that we denote as indi-
vidual prediction reliability for job runtimes. Evaluating the quality of prediction 
accuracy is a challenging problem in machine learning [23]. Using the individual 
prediction accuracy metric (2) for previous jobs, we train a regression model to pre-
dict job runtime accuracy for the newly submitted jobs. When a job is submitted to 
the HPC cluster, information including the user id, time of submission, requested 
runtime, CPU and memory is available for each job; we extract useful features from 
job log. We explain the details of our approach to Sect. 4. The prediction accuracies 
estimated by our reliability estimation machine have a Pearson correlation of 0.84 
with actual accuracies for HPC2N trace data.

2.4  Job runtime prediction reliability estimation

As discussed earlier, runtime values by users are far from accurate [13]. Several 
approaches have been proposed to generate more accurate runtime predictions based 
on available information about the job at the time of submission. In [18], several 
time-series-based approaches are used to predict job runtimes. A machine learning 
approach was proposed in [19] where the authors propose an online learning model 
that makes a prediction for each newly submitted job and updates the prediction 
model with newly available runtime after completion of each job. However, to the 
best of our knowledge, there has not been any study about confidence or reliability 
of runtime predictions for individual jobs. One important issue in using predicted 
runtimes is the fact that for some jobs, the prediction accuracy is low. Hence, there 
is the need to measure the expected prediction accuracy for specific jobs that we 
denote as individual prediction reliability for job runtimes. Evaluating the quality 
of prediction accuracy is a challenging problem in machine learning [23]. Using the 
individual prediction accuracy metric (2) for previous jobs, we train a regression 
model to predict job runtime accuracy for the newly submitted jobs. When a job is 
submitted to the HPC cluster, information including the user id, time of submission, 
requested runtime, CPU and memory is available for each job; we extract useful fea-
tures from job log. We explain the details of our approach to Sect. 4. The prediction 
accuracies estimated by our reliability estimation machine have a Pearson correla-
tion of 0.84 with actual accuracies for HPC2N trace data.

2.5  Formulation of the problem

The problem studied in this work is to execute a set of concurrent parallel jobs with 
rigid resource requirements on an HPC platform with m units of resources. The jobs 
are submitted over time in an online manner.

The resource requirement dj of an application j is equivalent to the user-requested 
resource known at the time of submission. The actual value of runtime is only 
known a posteriori when the job completes. The problem we are trying to solve is 
how to schedule applications to achieve better performance and utilization, without 
knowing the accurate runtime values at submission time.
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Although application runtime has some correlation with several features, as dis-
cussed in previous works [19], 100% accurate prediction of application runtimes is 
not possible [19]. Thus, we are looking for scheduling solutions that improve the 
performance and utilization over the currently used approaches when 100% accurate 
prediction is not available for all jobs in the system and more specifically are inter-
ested in a scheduling solution that:

• is online.
• has low overhead.
• performs well even with inaccurate runtime predictions.
• achieves high performance when accurate predictions are available.
• outperforms commonly used scheduling strategies in a real-world setting (accu-

rate runtime is available for a subset of jobs).

3  Related work

The necessity of runtime prediction for parallel applications has been highlighted 
since the last years of twentieth century [24]. Different approaches have been pro-
posed to predict HPC application runtimes with different machine learning method-
ology as well as prediction features inputs [13, 25]. Several time-series-based meth-
odologies are proposed to use the information available about completed jobs in the 
system to predict the runtime for newly submitted jobs. They are mainly exponen-
tial smoothing and moving average methodologies that predict future values based 
on the recent runtime values. As noted by [18], these methods are not accurate and 
will not improve scheduling performance and utilization significantly. Some earlier 
works profile the existing applications and form a model similar to the regression 
decision tree to predict the runtime of the new application based on the most simi-
lar application profile [24, 26]. In [26], authors apply genetic algorithms to search 
among the history logs to find the most similar attributes. Wyatt II et al.  [27] use 
neural networks to predict the runtime of HPC applications. Several statistical meth-
ods fit a distribution to previous data and predict the new job runtime with mean and 
confidence interval of the inferred distribution [13]. Nissimov and Feitelson [28] 
draw sixteen different distribution from previous data and design a hidden Markov 
model to transit along with these sixteen states. Some other researchers have consid-
ered additional features for each job in trace and performed predictions based on the 
similarity between these features of the jobs [29, 30]. Some more recent works focus 
on the specific family of scientific workflows and use machine learning for predict-
ing runtime and resource usage for these applications [31]. Several works have pro-
posed interrogating of codes to extract features for runtime prediction. This is not 
practical in many cases due to privacy considerations. Making an accurate predic-
tion for application runtime is not easy. In fact, the scarcity of relevant training data 
makes the model building cumbersome. Several online prediction methods have 
been proposed that use the recently completed jobs in the same trace to strengthen 
the predicting power of their model [18, 25].
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Some authors correctly identified the importance of avoiding overfitting the value 
of runtimes and considered approaches that favor under-prediction over over-predic-
tion as over-predicted runtime values impose the expense of killing incomplete jobs 
[3, 19].

Similar to our work, some previous works considered inaccurate predictions. 
They proposed a solution to handle inaccuracies in predicted runtime values. 
Authors in [32] considered error margins for runtime prediction to be considered for 
runtime adjustment. In [33], authors developed an execution delay model for runt-
ime prediction and designed an adaptive stochastic allocation strategy for production 
workload traces. Ilyushkin and Epema [34] study the effect of runtime inaccuracy 
and find out that the bounded slow-down affected by inaccurate runtimes in highly 
utilized clusters.

4  Proposed hybrid scheduling platform

The study of sensitivity in Sect. 2.2 gave us an intuition to design a hybrid schedul-
ing platform. Since in real-world situations, accurate values of job runtimes are not 
available, we propose a hybrid scheduling platform that uses FCFS with backfill-
ing for jobs with unpredictable runtime. At the time of job submission, the normal-
ized regression model is used to predict the job runtime value in an online man-
ner. Then, jobs are classified into two queues of predictable and unpredictable using 
our trained reliability estimation model. Our platform schedules jobs with higher 
expected runtime accuracy using plan-based scheduling. The platform then per-
forms backfilling to schedule the jobs in the unpredictable queue on the remaining 
available resources. The predictable and unpredictable jobs are defined below.

Predictable jobs These are jobs with high prediction reliability. We characterize 
these jobs with an estimated runtime accuracy of 60% or more.

Unpredictable jobs These are jobs with low prediction reliability. We characterize 
these jobs with estimated runtime accuracy of less than 60%.

Our resource manager dynamically determines the resource quota for pure prior-
ity-based algorithm based on the ratio of predictable jobs.

4.1  Proposed design

In Sect.  2.2, we demonstrated how priority-based scheduling algorithms outperform 
backfilling algorithms when we have an almost accurate (accuracy of 60% and higher), 
prediction of job runtimes. We use this observation to design a hybrid scheduling 
algorithm. Similar to other algorithms discussed in Sect. 2.1, our algorithm is online, 
and scheduling takes place in rounds. Two different policies, SVF and FCFS-BF, are 
performed at each round. Using our reliability prediction model, we know for which 
subset of jobs we have more accurate runtime values. Our hybrid model applies plan-
based scheduling for the subset of jobs and backfills the remaining jobs on the top. We 
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propose a hybrid scheduling algorithm that in a clever way amalgamates the backfilling 
algorithms and plan-based scheduling algorithms. With our hybrid design, we benefit 
from the effectiveness of backfilling scheduling approach when the runtime predictions 
are inaccurate, and we benefit from the near-optimal performance of plan-based sched-
uling when the predictions are more accurate. We determine the reliability of predicted 
runtimes using a supervised machine learning method of gradient boosting trees as pre-
sented in Sect. 4.4.2. The supervised regression outputs an estimation of the prediction 
accuracy. Our scheduling platform puts jobs in two queues of predictable and unpre-
dictable based on their estimations of accuracy. For the jobs in unpredictable queue, the 
platform does not rely on system-generated predictions. The platform uses the runtimes 
requested by the user to backfill unpredictable jobs. Our hybrid scheduling platform 
assigns a subset of resources to plan-based scheduling to improve utilization of the 
resources and tops the remaining unused resources with backfilling. Our experiments 
prove the improved performance and CPU utilization of the proposed hybrid approach 
when compared to both pure plan-based and pure backfilling methodologies. Figure 4 
presents the hybrid scheduling platform in detail. As demonstrated in Fig. 4, when a 
job is submitted to the cluster, its information is stored in the repository. ML-unit cal-
culates the runtime prediction as well as estimated prediction accuracy. The hybridiza-
tion parameter calculator calculates the hybridization parameter based on the estimated 
prediction accuracy values, as explained in Sect. 4.3. The hybrid central scheduler uses 
the predicted runtime to order predictable jobs on � portion of resources and back-
fills the unpredictable jobs on top. After each job completes on the HPC system, its 
actual runtime is recorded in the repository. As demonstrated in Fig. 4, our scheduling 
platform has four main components: ML-unit, hybridization parameter adjusting unit, 
centralized scheduler and repository. When a job is submitted to the system, its runtime 
and prediction accuracy estimation are calculated in the ML-unit. The values of runt-
ime prediction and prediction accuracy estimation are used by the central scheduler to 
determine the deployment time of the new job in the HPC system. After the job com-
pletes running, information about actual runtimes is saved in the repository to be used 
by the ML-unit and hybridization parameter estimator unit. The repository contains the 
necessary data including prediction model parameters for the ML-unit as predictability 
estimation model. As a job completes running on HPC cluster, the runtime value is 

Fig. 4  Overview of the HS platform design
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added to the repository. The centralized scheduler, the hybridization parameter adjust-
ing unit and the ML-unit are elaborated in the following subsections.

4.2  The central scheduler

Using the input from ML-unit, jobs are partitioned into two queues: predictable and 
unpredictable jobs as defined in the beginning of current section. Jobs that are char-
acterized as predictable by ML-unit are input to a new queue called predictable. As 
shown in Fig.  5, the hybrid scheduler is composed of two schedulers: plan-based 
scheduler and backfilling scheduler. At first, the central scheduler performs plan-based 
scheduling. It determines the starting time of each predictable job in the waiting queue 
following a plan-based scheduling algorithm, as explained in Sect. 2.1. For this plan-
based scheduling, only a specific portion of resources using the specific portion of 
CPU cores determined by hybridization parameter unit is considered. Second, after the 
deployment plan of the predictable jobs is determined, FCFS with backfilling scheduler 
determines the starting time of unpredictable jobs on the remaining available resources. 
The complete schedule for all jobs is used to deploy jobs on the HPC cluster. This pro-
cedure is repeated at the time of each event in the computation cluster: job submission, 
job completion or job termination.

4.3  The hybridization parameter adjusting unit

The ratio of resources used by plan-based scheduling policy to schedule predictable 
jobs, � , is called hybridization parameter and will be updated by the hybridization 
parameter adjusting unit in the platform. The parameter adjusting unit updates the value 
of hybridization parameter, “ � ” based on the ratio of the sum of resource usage of pre-
dictable jobs to the total resource request all the jobs. The formula for updating � is 
presented below.

where dj is the resource requirement for the job j as defined in Sect. 2. The initial 
value of � denoted as �0 is chosen through a grid search as illustrated in Fig. 13.

(1)�t+1 = �t ∗

∑
i∈predictable di∑
j∈all jobs dj
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4.4  The ML‑unit

The ML-unit is responsible for predicting runtimes and estimating the accuracy of 
the predicted runtimes. The runtime prediction is performed using online normalized 
regression model [35, 36] similar to [19]. Another important component of ML-unit is 
runtime reliability estimator. This component determines how predictable the runtime 
of a given job is based on available features about the job at the time of submission. To 
determine the prediction reliability of jobs, we use a gradient boosting tree model. The 
model parameters are saved in the repository, and the model is rebuilt every 24 hours. 
One important function of the ML-unit is to determine if the jobs belong to a predicta-
ble or a unpredictable class of jobs. In order to study prediction accuracy for individual 
jobs, we need to use an appropriate metric to measure the accuracy of prediction for 
individual jobs.

Measure of prediction accuracy Common measures of accuracy in machine learn-
ing such as mean squared error (MSE) measure the accuracy of prediction globally. 
As we are interested in measuring and characterizing accuracy for each individual 
point in data set, we use a point-wise measure of accuracy that has been proposed in 
the literature of HPC job runtime prediction for HPC clusters [13, 18]. This metric 
measures accuracy of runtime prediction for each job by comparing the predicted 
job runtime value ( p̂j ) and actual job runtime ( pj ) as presented in Eq. 2.

4.4.1  Online job runtime prediction

As shown in Fig.  6, an online prediction module is in charge of predicting runtime 
values. For a newly submitted job, the online prediction module predicts the runt-
ime. The model is tuned by using the actual runtime of completed jobs in the clus-
ter. The goal of the online job runtime prediction module is to predict job runtimes 
in an online manner. As a job is submitted to the systems, a minimal set of features 
are extracted from the job description as well as resource management systems. These 
features are then used by an online job runtime prediction module to predict job runt-
imes. In our platform, we implemented an l2 regularized polynomial model similar to 

(2)accj =

⎧⎪⎨⎪⎩

1 p̂j = pj
p̂j

pj
p̂j < pj

pj

p̂j
p̂j > pj

Fig. 6  Online learning module predicts runtime for the current job based on the feedback from previous 
jobs
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[19]. New values of p̂i are predicted using features available from i − 1 completed jobs 
: Z = {z11...z1i−1,… , zki−1} . In this work, we use online normalized regression model 
as proposed in [36] similar to [19]. Online normalized regression is an appropriate 
machine learning model for predicting runtimes as it is able to predict job runtimes 
with minimal information, is online and is robust to noise in input data [36]. We use 
online normalized regression with stochastic gradient descent to find a polynomial 
functions of 18 input features, as listed in Table 1, corresponding to i − 1 previously 
completed jobs Z = {z11...z1i−1, ..., zki−1} . The model gets updated as more jobs are 
completed and the actual runtime values are available. The polynomial function to pre-
dict the runtime for a newly submitted job is of the form:

To build a model that predicts the runtime values most accurately, a loss function is 
defined to penalize errors of the prediction using the training samples as in Eq. 5. 
The parameters of the model, wi s, are found by minimizing a loss function as in 
Eq. 4. The regularization term, �||w|| , is added to avoid bias in the model we are 
learning by avoiding extreme values of parameters. The minimization of regularized 
cumulative loss for up to i-th completed job is:

where � is the regularization parameter and f (w, zj) is our prediction for runtime of 
job j. The loss function is defined as:

To focus on the symmetric inaccuracy of prediction, we consider the symmetric loss 
function instead of asymmetric loss function in [19] and we penalize over-prediction 
and under-prediction equally.

4.4.2  A meta‑learning approach to estimate runtime prediction accuracy

Meta-learning, or learning to learn, is the science of systematically observing 
how different machine learning approaches perform [37]. Here, we are interested 
in estimating the prediction accuracy of our online algorithm that predicts job 
runtime. To estimate the prediction accuracy of job runtimes (prediction reli-
ability), we use a supervised regression model. The regression model predicts 
runtime accuracy of the newly submitted jobs using the features presented in 
Table 2 and accuracy of completed jobs as the target values. As shown in Fig. 7, 
feature vectors of completed jobs, fi = {z1i,… , zki} , and their corresponding 
prediction accuracy, acci, are used to train a regression model. The regression 
model maps the features and the predicted runtime to accuracy values. We used 
gradient boosting tree regression [38] as it is known to find a nonlinear map-
ping from data to target values [39]. The trained prediction reliability estimation 

(3)f (w, z) = wT�(z).

(4)argw min

i∑
j=1

L
(
xj, f (w, z), pj

)
+ �||w||.

(5)L(zj, f (zj), pj) =

{
𝜆.f (zj) − pj)

2 (zj) ≥ pj
𝜆.(pj − f (zj))

2 f (zj) < pj
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model is used to estimate the runtime prediction accuracy of the newly submit-
ted jobs. In Fig.  8, the prediction reliability outputs accuracy estimation value 
for job i, ̂acci , using feature vectors fi = {z1i,… , zki, p̂i}.

Gradient boosting tree regressor is a prediction approach that ensembles 
regression decision trees with gradient boosting [38]. In gradient boosting, a 
model is built in a stage-wise fashion. In each stage, the existing model is boosted 
by the optimization of an arbitrary differentiable loss function. In the gradient 
boosting algorithm, in each stage, a tree is built based on the residuals from the 
tree in the previous stage. Basically, in each stage, a new gradient tree is fitted 
into residual values. It is important to note that at each stage, randomized sam-
ples of training data are chosen without substitution to avoid the risk of overfit-
ting [40]. Algorithm 1 shows the procedure to find gradient boosting regression 
tree predictor ̃meta for input F. The algorithm has training set of k-dimensional 
input features of size N denoted as F = {f1, f2,… , fN} and their corresponding 
target accuracy values ACC = {acc1,… , accN} . As the first step, a decision tree 
meta0(F) is fitted to F and ACC . Namely, the features to branch upon at each level 
of the tree as well as the threshold to make the decision are found by solving an 
optimization problem [41]. Using the trained decision tree, give us the ability to 
find a decision region of feature space for a new data point. The predicted target 
value for a new data point is predicted by averaging the runtime of the applica-
tions in the same subregion. Then, in each stage, the gradient of the residuals of 
predictions are calculated, and a regression tree is fitted to this gradient to find 
Rjm decision regions. After calculating the multiplier for each gradient residual 
subtree and adding the weighted sum of subtrees to the previous regression tree, 
the stage is complete. The routine is repeated for a tunable number of stages. 

Fig. 7  Prediction reliability estimation machine is trained using features of completed jobs 
fi = {z1i,… , zki} and their corresponding prediction accuracy values acci

Fig. 8  The trained reliability estimation machine is used to predict the accuracy for newly submitted jobs
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In Fig. 9, the relative importance of the most important features is presented. The 
most important feature is assumed as 100% , and all other feature importance factors 
are scaled to [0, 100]. The value of runtime for the previously completed job from 
the same user has the most influence on the predictability of the runtime for the 
current job. We see that the requested runtime by users and the runtime for the job 
before the last job from the same user are the second and third important features. 
The features names are presented in Table 2.

Fig. 9  Feature importances for meta-learning model are shown
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Correlation of estimated accuracy values with the actual accuracy values has been 
used to measure the goodness of fit for meta-learning approaches in the literature [42]. 
In Table 3, the correlation of actual runtime accuracies and estimated accuracies are 
compared with CNK [42–44] and decision tree regressor. We observe that gradient 
boosting tree meta-learning estimation of accuracy has the highest correlation with 
actual prediction accuracy among our experimented machine learning algorithms.

5  Evaluating the performance of our proposed hybrid scheduling 
platform

The use of benchmark datasets rather than in-house datasets provides repeatability 
of experiments and eases comparison of the results of the researches. One challenge 
in studying HPC applications and their scheduling is the scarcity of public data-
sets [45]. During the previous two decades, some national laboratories have pub-
lished the traces of their high-performance computing clusters. A collection of these 
datasets are cleaned and benchmarked as parallel workload dataset [17]. As parallel 
workload dataset [17] is the current benchmark for HPC scheduling [16, 46, 47] and 
runtime prediction [48], we use three traces from this dataset. They were consistent 
with our problem statement in terms of inputs we require for each application and 
the specification of the scheduling problem. More specifically, our chosen datasets 
were collected from non-preemptive scheduling clusters, which is consistent with 
our problem statement. In addition, the set of available features we require for our 
ML-unit is provided in these datasets. Additionally, these datasets were commonly 
used in published research work and facilitate the comparison of results. HPC2N is 
a trace log containing three and a half years worth of accounting records from the 
High-Performance Computing Center North (HPC2N) in Sweden. LLNL ATLAS 
is a trace log from ATLAS cluster in Lawrence Livermore National Lab, and ANL 
Intrepid is from Intrepid cluster in Argonne National Lab. SDSC trace is from the 
SDSC Blue Horizon in San Diego Super Computer.

5.1  Event‑driven simulation

We simulate the scheduling of traces using the open-source event-driven simulation 
package, Alea2 [49]. Alea2 simulator is based on the GridSim simulation toolkit 
[50]. Alea2 extends Gridsim to provide a simulation environment that supports sim-
ulation of varying job scheduling problems [19, 49]. Alea2 uses a centralized job 

Table 3  Correlation of 
estimated accuracies with actual 
accuracies for gradient boosting 
tree is compared with decision 
tree and CNK

Gradient boosting 
tree

Decision tree CNK

HPC2N 0.84 0.77 0.44
SDSC 0.81 0.75 0.53
ANL 0.79 0.68 0.47
LLNL 0.78 0.66 0.50
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scheduler which uses scheduling techniques for schedule generation. For priority-
based scheduling algorithms, Alea2 central scheduler, jobs are submitted according 
to their submission time in the trace. An ordered queue of jobs is maintained and is 
updated in the event of job submission or job termination. Once started, jobs run to 
completion, implying that the central scheduler is not allowed to preempt or migrate 
the tasks. We have added an online regression method as a machine learning-based 
prediction module and gradient boosting tree as job runtime prediction accuracy 
estimation to the Alea2 package. At the time of each job submission, the prediction 
module calculates the prediction of runtime and returns the runtime value to the 
central scheduler.

5.2  Comparison with existing scheduling approaches

The aim of this section is to compare the performance and efficiency of our pro-
posed hybrid scheduling algorithm with common scheduling algorithms in a real-
world scenario. For this purpose, we implemented a hybrid scheduling platform, as 
described in Sect. 4. To implement the platform, we extended the existing prediction 
module in Alea2 with implementing the online normalized regression as described 
in [19] as well as a module for performing reliability estimation with gradient boost-
ing tree regression. A thin module of hybridization parameter calculator was also 
added to Alea2 repository. In the scheduling module, hybrid scheduler as well as 
FCFS backfilling with SVF and online-SVF was added.

In the performance and efficiency comparison experiments, hybrid scheduling 
algorithm was compared with two backfilling approaches as well as two plan-based 
scheduling algorithms on production traces. FCFS-BF1 denotes backfilling with SJF 
as used by [13, 19]. FCFS-BF2 is similar to FCFS-BF1 but uses smallest volume 
first (SVF) rule to choose jobs to backfill. Plan-based1 is the dynamic version of 
SJF as described in Sect. 2.1. Plan-based2 is dynamic version of SVF [16].

Waiting time and bounded slow-down are among the most used criteria for evalu-
ating the performance of the scheduling algorithm, and utilization is a criterion to 
evaluate the resource usage efficiency of the scheduling algorithm [13]. The criteria 
are listed below.

Bounded slow-down The slow-down of a job is the maximum ratio of job response 
time on the loaded system to its runtime on a dedicated system. To calculate slow-
down, we calculate the ratio of response time plus wait time to the response time. 
The slow-down value is often more than one. The lower the value of the slow-down 
in a clustering environment indicates better scheduling of the applications. As 
using slow-down formula, the short jobs with near-zero response time will have a 
high value of slow-down with a small wait time, Tsafrir et al. [13] have proposed 
bounded slow-down. Bounded slow-down substitutes the runtime in the dividend by 
the maximum of a constant value, � and the response time.

(6)blsd = max
j∈J

(
waitj + pj

max
(
pj, �

)
)
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Average wait time The average wait time measures the average of the time between 
job submission and the job start time on the system overall jobs.

Utilization The ratio of total node hours used by the scheduling algorithm to the 
total nod hours elapsed from the time the first job was submitted to the system.

We used hybrid platform to schedule jobs of four different traces from parallel 
workload dataset and compared the three criteria explained above with two back-
filling and two plan-based scheduling approaches: FCFS and backfilling algo-
rithms, FCFS-BF1 and FCFS-BF2, as well as plan-based scheduling algorithms, 
Plan-based1 and Plan-based2. The results of these experiments are shown in 
Figs. 10, 11 and 12. In all these figures, the hybrid scheduling platform is denoted 
as HS.

In the first set of experiments, we compared the wait times. In Fig.  10, wait 
times of our hybrid platform is compared with the two plan-based and backfilling 
algorithms. Plan-based schedulers perform slightly better than backfilling algo-
rithms, but our hybrid platform performs significantly better than both categories 
of schedulers (about 20%).

In Fig. 11, bounded slow-down improvement of hybrid platform is compared with 
backfilling and plan-based approaches. We can see that the slow-down is consider-
ably lower than the plan-based and backfilling schedulers. In fact, we can see that 
the hybrid platform’s bounded slow-down is more than 50% lower than backfilling 
and plan-based methods. The improved bounded slow-down and average wait time 
in the hybrid platform are because the hybrid platform uses plan-based scheduling 
for jobs identified as predictable and backfills the jobs identified as unpredictable on 
remaining available resources. This curated choice of scheduling algorithm results 
in lower slow-down and average wait time and better performance.

Fig. 10  Average wait time values of HS is compared to FCFS, SVF-BF, SJF-BF, SVF and SJF. HS has 
the lowest average wait time



1 3

A hybrid scheduling platform: a runtime prediction…

In Fig. 12, the utilization improvement of the hybrid platform is compared with 
backfilling and plan-based approaches. The utilization is reported as an improvement 
over the simple SJF scheduling. We can see in Fig. 12 that utilization improvement 
is also significantly greater than the backfilling and plan-based approaches. The bet-
ter utilization of hybrid also shows that using predictability information about the 
jobs and choosing the scheduling algorithm accordingly leads to better packing of 

Fig. 11  Bounded-slow-down values of HS is compared with SVF-BF, SJF-BF, SVF and SJF. HS has the 
lowest bounded slow-down

Fig. 12  Utilization percentage of HS is compared with SVF-BF, SJF-BF, SVF and SJF. HS has the high-
est utilization
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jobs into resources than completely relying on predicted runtimes in plan-based 
algorithms or ignoring job runtimes in backfilling algorithms.

5.3  The effect of clairvoyance on hybrid scheduler

In Table 4, we compare the bounded slow-down of hybrid platform with best per-
forming backfilling and plan-based algorithms both in the clairvoyant case where 
accurate runtime values are available at the time of job submission as well as in 
the non-clairvoyant case where runtimes are predicted with system-generated 
approaches. In the clairvoyant scenario, as expected, plan-based scheduling has 
lower bounded slow-down than backfilling scheduling. This is because plan-based 
scheduling determines the order of jobs based on their runtime values. When the 
accurate values of runtime are available, plan-based scheduling performs best. 
However, in the more realistic situations, where runtime values are predicted using 
machine learning approaches and our proposed accuracy estimation is used to 
decide about the scheduling approach of each job, our proposed hybrid platform has 
the lowest bounded slow-down.

5.4  Parameter selection for hybrid scheduling

As discussed in Sect. 4, the portion that we allocate for predictable jobs ( �0 ) needs 
to be determined. To study the effect of choosing different values of �0 , we repeated 
our simulations of hybrid platform scheduling with different values of �0 on HPC2N 
trace and measured the values of average wait time. Our simulations showed that 
with all values of �0 between 0.3 and 0.8 hybrid scheduling outperformed backfill-
ing and plan-based scheduling algorithms. In Fig. 13, we have plotted average wait 
times for different values of �0 . We can see that the initialization of �0 = 0.6 resulted 
in the best performance. We repeated the simulations for 20 times to ensure the reli-
ability of our results.

6  Conclusion

The goal of this paper was to design a scheduling platform to handle inaccuracies 
in workload runtimes. We designed a novel scheduling platform that hybridizes 
two popular classes of scheduling algorithms, namely backfilling and plan-based 

Table 4  Bounded-slow-down 
comparison with Clairvoyant 
problem setting

Clairvoyant Non-clairvoyant

Backfilling Plan-based Backfilling Plan-based Hybrid 
plat-
form

SDSC 40 20 50 45 25
ANL 24 11 24 22 14
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scheduling. Our design was motivated by the difference in sensitivity of these two 
classes of scheduling algorithms to runtime prediction accuracy. Our platform is 
designed based on a deep understanding of the characteristics of plan-based and 
backfilling scheduling algorithms. Our hybrid scheduling platform uses the estima-
tion of predictability of HPC application runtimes to choose an appropriate schedul-
ing algorithm for each specific application. Our proposed platform avoids resource 
fragmentation by adaptively and dynamically changing the portion of computation 
resources that plan-based scheduler uses. This portion is calculated based on the 
resource requirement ratio of recently submitted jobs with reliable runtime predic-
tion. Our meta-learning solution uses the power to predict the level of uncertainty 
of job runtimes to better schedule HPC applications on available computation 
resources. Our extensive trace-based experiments show significant improvement in 
the performance and utilization of HPC workload traces.

While our present work serves as a demonstration of using prediction reliability 
to improve performance and utilization of HPC scheduling platforms, there are sev-
eral directions for taking our idea further. A natural direction is to implement the 
proposed platform in scheduling packages such as Cobalt [12]. Another direction is 
to extend the proposed approaches to predict reliability for resource consumption of 
data center workloads.
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