

DCCSOA: A Dynamic Cloud Computing Service-Oriented Architecture

Mehdi Bahrami 1 and Mukesh Singhal 2

Cloud Lab,

University of California, Merced
1 Senior Member of IEEE, MBahrami@UCMerced.edu

2 IEEE Fellow, MSinghal@UCMered.edu

Abstract—The emerging field of Cloud Computing provides

several advantages over traditional in-house IT services, such as

accessing to elastic on-demand computing and storage over the

Internet, and cost effective pay-per-use subscription plans.

However, according to the International Data Corporation

(IDC), cloud computing has several issues, such as a lack of

standardization, a lack of customization, and limited

interoperability. In addition, there is an increasing demand for

introduction and migration of a variety of services to cloud

computing systems, which are abstract their offering services

into various *-as-a-Services (*aaS) layers. Although each such

service provides a new feature (e.g., simulation services in

cloud), it aggravates the issues due to the lack of standardization

and inability to customize services by a vendor because each

*aaS has its own features, requirements and output. In this

paper, we propose a cloud architecture to alleviate issues

associated with standardization and customization. In the cloud,

the proposed architecture uses a single layer, called Template-

as-a-Service (TaaS), to provide: (i) a single service layer for

interaction with all resources and major cloud services (e.g.,

IaaS, PaaS, SaaS and *aaS), (ii) a standardization for existing

services and future *aaS across different cloud environments,

and (iii) a customizable architecture which can be modified on

demand by a cloud vendor, and its partners to provide the

flexibility on cloud computing systems. A comparison with

previous studies show that the proposed architecture provides

customization and standardization for cloud services with

minimum modifications.

Keywords— Cloud Computing; Cloud Architecture; Cloud

Customization; Cloud Standardization; *-as-a-Service; SOA;

I. INTRODUCTION

Cloud computing is based on a distributed and parallel

computing systems that provide elastic storage resources and

computing resources over the Internet. The cloud computing

paradigm allows customers to pay for their resource usage

based on pay-per-use model, and enables customers to scale

their storage and computing resources up or down on-

demand [1].

An important aspect of cloud computing is cloud
architecture [1] that refers to the components (e.g., service
layers), subcomponents (e.g., security or message passing in
service layers), and overall system organization of cloud
computing [2, 3]. Moving successfully into cloud computing
requires an architecture that will support new capabilities for
migrating different traditional services and applications to
cloud computing systems. Such an architecture should support
all user domains of a cloud computing system which includes

cloud vendors, cloud developers, cloud customers or cloud
vendors partners, and end-users.

II. MOTIVATION

This dependency on cloud services creates several issues
[4, 5, 6]. For example, according to the IDC Survey [4], 79.8%
people say “Bringing back in-house may be difficult” is
another issue and 76.8% people say “Hard to integrate with
in-house IT” is an issue. These issues indicate consumers are
afraid of migrating to cloud computing systems because the
migration is difficult to integrate with IT department services
and it is difficult to return the data back to the IT department.
The survey shows 80.2% of people say “Lack of
interoperability standards” is another concern. Thus, cloud
computing requires interoperability with other cloud
computing systems; also as indicated in this report, 76.0% of
respondents answer that “Not enough ability to customize” is
an issue. Similar significant concerns around cloud computing
are reported recently in other studies [5, 6, 7]. Furthermore, all
of these concerns show that cloud computing systems require
flexibility in defining a variety of services that meet specific
cloud users’ requirements. The flexibility in defining services
can be implemented by a customizable architecture that
allows a vendor to define a service for each group of users.

Cloud vendors provide several services to their customers

through a general multi-tier architecture (IaaS, PaaS and

SaaS). Although this architecture is useful for several

customers’ requests, customers may have own specific

request. Customers should adapt his request based on offered

services, because each offered service intends to satisfy

unique user requests. For example, when a customer requests

a service in PaaS for developing an image processing

application, the customer has the same accessibility to

Application Programming Interfaces (API)) as other

customers who develop a web mining application on a cloud.

However, an image processing application requires specific

functions (e.g., spatial transformations) that are different in

type and not useful for a web mining application that requires

more specific network functionality (e.g., spatial indices).

This example shows that the customization of a service by a

cloud vendor allows a cloud vendor to provide unique service

to each customer. A customized service allows customers to

have a simple system or API rather than a complex system or

a complex API that intends to satisfy different users’

demands. For example, a cloud vendor could define a

customized service that only satisfies a small group of

partners or users, such as a group of users who only need

Voice-over-IP service (VoIP) in a cloud computing system.

Another concern in cloud computing is an increasing

demand for the introduction and migration of a variety of

services to cloud computing systems, that are a type of

*-as-a-Services (*aaS). Although each service provides a

new feature, such as Simulation-as-a-Service [8] or Robot-as-

a-Service [9], it aggravates migration issues and complexity

issues due to the lack of standardization and customization,

respectively because each *aaS has its own features,

requirements and output. For example, Robot-as-a-Service

provides a platform to control robot devices through a cloud

computing system. This service requires different resources

and it provides different outputs. A dynamic architecture

allows vendors to add/edit their services and future *-as-a-

services to their cloud computing systems with ease.

In this paper, we propose a dynamic and customizable

architecture that targets mentioned concerns, such as

providing customizable and dynamical services, a

standardization for different cloud vendors with different

solutions, supporting different services (*aaS) in a cloud

computing system, and a solution for cloud vendor lock-in

issue.

III. RELATED WORK

Currently, we do not have a generally accepted standard
for cloud computing. Unlike the Internet which was developed
by the U.S. government agencies [10], such as ARPA [11],
cloud computing has been developed by several open-source
groups and leading business companies, such as Microsoft and
Amazon. Therefore, several independent cloud architectures
have been developed.

To the best of our knowledge, no effective architecture
exists that supports dynamic customization. As previously
discussed, the lack of ability for customization is one of the
major issues in existing cloud architectures. This drawback of
existing cloud architecture creates other issues, which are
discussed in Section II, such as migration issues.We have
several solution to overcome this drawback by implementing
customization at different level of cloud computing systems.
As shown in Figure 1, we divided customization of cloud
computing systems into conceptual level, architecture level
and implementation level. In the following section, we review
related work in each level of customization.

A. Conceptual Level

Conceptual level provides a high-level definition of a
customized system. Based on customization at the conceptual
level, we can define an architecture and its implementation.
For example, one of the conceptual customization is Mass
Customization (MC) [12] which is based on marketing and
manufacturing. MC focuses on developing one product with
different features. For instance, Hu et al. [13] proposed a mass
customization for their proposed cloud architecture (CCRA),
which enables a cloud vendor to define a cloud architecture
requirements and its implementation. In their architecture,

1 Available from: http://www.cloudforum.org/
2 Available from: http://dmtf.org/standards/cloud

different models of one object could be defined by a
conceptual model. Each object has different features. Their
concept provides different services through a dynamic domain
with different abstractions which is called a model. Although
Hu et al. provide a customization model in cloud computing,
the model is not adoptable because authors did not provide the
specific detail of implementation methods for a diverse
environments.

Figure 1. Customization Levels

B. Architecture Level

Existing cloud architectures are static, and are divided into
the following categories:

(i) Service-Oriented Architectural (SOA) [14] based: Tsai
et al. provide SOCCA[15] which is a combination of
Enterprise SOA style and cloud style and Zhang et al. provide
CCOA [16] architecture based on SOA with a scalable service
feature, but these cloud architectures do not provide
customization on each service layer;

(ii) Cloud Reference Architecture (CRA) [17] which is
developed by NIST. This architecture has five primary actors:
Cloud Service, Consumer, Cloud Service Provider, Cloud
Broker, Cloud, Auditor and Cloud Carrier;

(iii) Open forums, such as OGF Open Cloud Computing
Interface [18], Cloud Computing Interoperability Forum
(CCIF)1, Deltacloud [19], DMTF2, Open Stack [19], Open
Cloud Consortium 3 and Open Cloud Computing Interface
(OCCI)4 [20].

The idea behind most of these open source clouds is to
provide a common interface that includes major cloud
platforms. However, in this paper, we propose an architecture
that allows vendors to define and implement their own
specific service through a standardized layer cross all other
vendors’ platforms. In the proposed architecture, the vendor
uses a layer to provide standard services to their customers.
The vendors are not required to modify their platform and they
can provide an extension layer on the top of their cloud
platform.

Existing cloud architectures do not provide any solution
for facilitating different services, such as *aaS. In addition,
existing cloud architectures are static and could not easily
provide a customization on services.

3 Available from: http://opencloudconsortium.org
4 Available from: http://occi-wg.org/about

Conceptual

Architecture

Implementation
Services Applications

C. Implementation Level

Customization at implementation level allows a vendor to
define several separate services and applications.
Customization at this level is often tied to a vendor’s platforms
and infrastructures.

Major customization at implementation level has been
developed by using Object-Oriented (OO) paradigm. The
concept of OO enables developer to implement an application
based on different objects which are closely linked. For
customization reasons, several implementation models have
been developed for cloud computing systems. For example,
Bahga et al. [21] provide a Cloud Computing Model (CCM)
which is a component-based model for cloud computing
systems. The CCM allows a developer to provide multiple
components which are connected via Uniform resource
identifier (URI) and uses message passing. Although, the
model provides a customization for cloud applications, CCM
is relied on cloud architecture.

The CCM has several drawbacks. For example, if an
architecture is non-functional, then the implementation model
cannot provide an efficient model. For example, limitation on
network access at PaaS layer it causes limitation on CCM
application (i.e., the lack of accessibility to a protocol).
Implementation of CCM also has some drawbacks because the
model depends on the architecture with specific requirements,
such as type of programming language. These issues show
disadvantages of a cloud architecture could be caused issue in
the implementation.

IV. THE PROPOSED ARCHITECTURE

This section presents a Dynamic Cloud Computing
Service-Oriented Architecture (DCCSOA) that allows cloud

vendors to analyze, design, develop and implement a cloud
computing system. The DCCSOA provides a dynamic service
layer that allows a vendor to add new customized services on-
demand.

A dynamic architecture for cloud computing allows cloud
vendors to customize their services. As shown in Figure 2, the
architecture is based on SOA. The SOA features enable an
architecture to provide several independent services that work
together as a system and can be run on different cloud
computing systems. The proposed architecture can customize
value-added cloud services (offered resources on a cloud
computing system). In the proposed architecture, a dynamic
layer represents all heterogeneous services, and it can
customize services on-demand.

A. DCCSOA Components

The DCCSOA has several service layers that are discuss as
follows:

Dynamic Template Service Layer (DTSL): The DTSL
provides a dynamic and customizable bridge between all
value-added services in a cloud computing system and all
cloud user groups, such as cloud vendor users, cloud
customers (partner of cloud vendors), cloud developers and
cloud end-users. The DTSL is a primary component of the
proposed architecture and it provides a service layer which we
call “Template-as-a-Service (TaaS)”. The TaaS provides a
dynamic customization on value-added services. The DTSL is
divided into two sub-layers as follows: “Front-end of
Template-as-a-Service (FTaaS)” and “Back-end of Template-
as-a-Service (BTaaS)”. The FTaaS provides customized
value-added cloud services to cloud clients by Cloud Client
Dashboard. The BTaaS is only available to cloud vendors and
it interacts with all cloud services, such as all traditional

Cloud Client Dashboard

 (End-users, Developer and Third-party users with regular end-

user or developer role)

Dynamic Template Service Layer (DTSL)

Cloud Governing Services

Cloud Vendor Dashboard

 (Cloud vendor users and third-party users with an

administrator role)

Cloud Value-added Services

Main services: IaaS, PaaS, SaaS
Other Services, such as Business Process-as-a-Service

Virtualization Services

DB DB

Cloud Subscription Service

Cloud Provisioning Service

QoS, Monitoring, Metering, Billing

Services

Cloud Ecosystem Management

Service

Template Management Service

Back-end of Template-as-a-Service (BTaaS)

Front-end of Template-as-a-Service (FTaaS)

User Governing
Services

Billing,

Subscriptions

Figure 2. The Architecture of DCCSOA

Cloud Brokers

service (IaaS, PaaS and SaaS), other service layers (e.g.,
Firmware-as-a-Service, Robot-as-a-Service) and in general
*aaS. The classification of DTSL into BTaaS and FTaaS,
makes a cloud architecture progressively deployable
alongside existing cloud technologies without significant
barriers or overhead because the BTaaS defines a dynamic
layer which can be modified and customized by a cloud
vendor. The BTaaS can be developed alongside of existing
cloud service layers. The FTaaS forms the customer interface
and subscriber audits.

A cloud vendor defines several different services
on-demand at DTSL. Each defined service is a Template [22]
which is integrated with one or multiple value-added cloud
services. Cloud vendors can set up, configure and provide
different templates to their customers based on different
value-added service layers in a cloud computing system. As
illustrated in Figure 3, a template at the back-end of DTSL is
dynamic, and it interacts with one or multiple value-added
cloud services.

A cloud vendor can define several templates at FTaaS
where each template provides cloud services to end-users. The
FTaaS allows different vendors to define the same template to
their customers. This feature provides independent value-
added service to customers who need data and applications
migration from one cloud to another cloud. Cloud vendor are
able to define their own *aaS with a BTaaS. The BTaaSs differ
from vendor to vendor and they provide a transfer from
heterogeneous *aaS to general templates. For example in
Figure 4, if two vendors (V1 and V2) provide different IaaSs
(IaaS1 and IaaS2), each vendor can provide a template as IaaSx
at FTaaS. BTaaS in V1 is different from BTaaS in V2. Both
vendors should use his own BTaaS to configure the back-end
of his IaaSx.

The dynamic customization feature of the BTaaS layer
enables a cloud vendors to customize their own services and
it provides standard services through the templates.

A cloud vendor can edit a layer by adding, editing or removing
a template as shown in Figure 5. In this figure, rows represent
cloud-value added services (traditional services layers) are
static, such as IaaS, PaaS and SaaS or other service layers,
such as future services of *aaS. In this figure, columns

represent templates and are dynamic that can be defined by a
cloud vendor on-demand. Four templates are defined in Figure
5. For example, a user who has access to T1 can use SaaS layer,
or a user has access to T3 can access to SaaS and PaaS layers.

Figure 4. An example of a template (IaaSx template) with two different
back-ends for two different platforms

The templates can be implemented for any kind of cloud
services and traditional services. For instance, a cloud vendor
can define several services as a template, such as Business-
Intelligence-as-a-Service (BIaaS) and IaaS. In this case, the
figure 5 will be changed and rows represent IaaS and BIaaS
layers, and columns can be defined by a vendor.

The number of columns is dynamic, and is defined by a
vendor. Each column stands for a template. The vendor
defines several templates which make use of resources in one
or multiple layers in a cloud computing system. For example,
in Figure 5, T1, T2, T3 and T4 are cloud templates (orange
colors). T1 interacts with SaaS value-added service layer, T2
interacts with all value-added
service layers in a cloud
computing system, T3 interacts
with two value-added service
layers (SaaS and PaaS) and
finally T4 interacts with two
lower-level value-added service
layers (PaaS and IaaS).

The customer groups include end-
users, developers and third-party users (with end-user, or
developer role). They use Cloud Client Dashboard for
interacting with FTaaS to use cloud resources. Each user has
an option for working on several cloud value-added services
simultaneously by interacting with a template. For instance, a
developer who uses T4 template in Figure 5, can work on PaaS
and IaaS simultaneously. The developer can work on IaaS to
install a new application (App1) on the server and she has
access to PaaS simultaneously for developing a Mashups
application which is required App1.

Cloud Client Dashboard (CCD): This component
provides an interface to a group of end-users, developer and
third-party users. Although the third-party users are
collaborating with a cloud vendor to develop or provide cloud
services or applications, they may use resources as regular
cloud users. Each user can subscribe to a template rather than
a service in traditional cloud computing systems. The
dashboard provides a list of templates that each group of users
can subscribe for billing tools to provide billing on resource
usage of a template, and monitoring tools to provide
monitoring on all subscribed templates. The CCD interacts
with FTaaS to provide cloud services based on defined
templates.

BTaaS1

BTaaS2

IaaS1

IaaS
2

end-user

IaaS
x

FTaaS

V1

V2

Figure 5. One snapshot of the

dynamic BTaaS layer

IaaS

PaaS

SaaS

F
ro

n
t-

en
d

End-user

Cloud Developer

Cloud Customer (Partner)

B
ac

k
-e

n
d

Cloud Vendor

DTSL

Figure 3. One snapshot of DTSL layer and connection to cloud
value-added services

*aaS

Cloud Vendor Dashboard (CVD): The CVD component
provides an interface to high-level users, such as system
administrators and third-party users (with an administrator
role). The CVD is isolated from regular users to provide a
secure layer to cloud administrators who work on configuring,
adding and editing cloud templates.

User Governing Services (UGS): This service provides
control and configuration of the DTSL for Pricing, Billing and
Subscription services for each defined template. This layer sits
on the DTSL because this service requires a list of users who
are subscribed to templates. This service also interacts with
the Cloud Governing Services (CGS) to enable high-level
users to configure and control a cloud ecosystem.

Cloud Governing Services (CGS): This service is
accessible through Cloud Vendor Dashboard for
administrative users. This service includes the following
services: Template Management Service (TMS) which
controls the DTSL to develop FTaaS and BTaaS. The TMS
interacts with BTaaS and Cloud Value-Added Services layer
to provide cloud services through a template. Cloud
Subscription Service provides a management service for
defining a different type of subscriptions as well as billing and
pricing methods for each template. Cloud Provisioning
Service provides a management service for resources and it
provision elastic services based on Cloud Subscription
Service. Cloud Ecosystem Management Service provides an
integrated model of cloud interdependent components.
Quality of Services (QoS) service provides a control
management on overall performance of cloud services.
Monitoring Service monitors cloud templates and the
customer applications which run on the cloud. Metering and
Billing Services provide a payment structure and access to one
or multiple templates.

Virtualization Services (VS): This service layer provides a
virtualization tools for storage, computing, and other
resources. This service includes Dispatcher, Storage and
Programming API Tools, and Virtual Machine (VM) Services,
such as Virtual Machine Monitors.

B. Advantages of the Proposed Architecture

The DCCSOA has several advantages which are described
as follows:

Customizable architecture: The dynamic component of
the proposed architecture (DTSL) allows cloud vendors to
modify and customize their cloud architecture on demand.
This customization improves cloud architectural issues, such
as lack of usability of cloud computing because a cloud vendor
defines a new template that covers several services for
enabling customers to have an integrated service. This offer
will be more attractive for a variety group of users because a
vendor is able to provide different customized services via
different templates. For example, in traditional cloud
computing systems, a telecom [23] user who needs one or
more network functions should find a cloud vendor who
provides IaaS and subscribe to this service. However, a cloud
vendor can define multiple services (e.g., a VPN service and a

storage service) in a template for a group of users, such the
telecom user.

Flexibility and accessibility: The DTSL gives more
flexibility and accessibility to customers through a template
that provides several services at the back-end of templates
(BTaaS). As a result, cloud vendors are able to offer different
cloud templates to their customers. Each template could be an
integration of one or more services. For example, in Figure 5,
a cloud vendor provides four different templates, and cloud
users who work on template T3 can interact with PaaS and
SaaS layers simultaneously.

Dynamic Abstraction: The proposed architecture abstracts
and encapsulates higher-level service layers from lower-level
service layers by defining a template in DTSL that exposes
lower-level services to advanced customers, and expose
higher-level services to regular users or a customized services
from both levels to a group of users. For example, in Figure 5,
a vendor offers template T4 to advanced customers who need
service in PaaS and IaaS service layers. The reason for this
exposure is to improve flexibility and accessibility for some
customers who need access to different and multiple services.

The DTSL facilitates the customers’ migration to the cloud
and return back to the in-house IT department because a cloud
vendor can provide a template at DTSL that has the similar
features to in-house IT or other cloud vendors. For example,
in Figure 5, customers who interact with T4 can access to IaaS
to setup an operating system, and use a cloud platform
simultaneously.

Portability of applications and data in cloud: The
portability of both applications and data in cloud computing is
another advantage of DTSL which is divided into FTaaS as
front-end and BTaaS as back-end. As previously described, a
lack of portability in cloud for both applications and data, that
causes vendor lock-in issues, is a major issue in cloud
computing systems. The DCCSOA enables different cloud
vendors with heterogeneous infrastructures provide the
similar FTaaS to their customers. The similar FTaaS allows
customers to migrate data and applications to other vendors.
The vendors can configure different BTaaS based on their
specific infrastructures, such as hardware or platforms.

Cloud Vendor Devolution: Current existing cloud
architectures do not support cloud vendor devolution that
allows a partner of a cloud vendor to develop cloud
configurations. The DCCSOA enables a cloud vendor to
define a template, such as T2 in Figure 5. The cloud vendors
can provide full access, and give a devolution role to their
partners who uses a template (e.g., T4). The partners can
provide new templates which are derived from the main
templates (e.g., T4.1 from T4), to their customers. For security
reasons, DTSL manager, DTSL monitor and security monitor
control this group of users. The best advantage of this
permission is that a cloud partner is able to develop the cloud
computing system like a cloud vendor. For instance, a cloud
vendor provides a PaaS as a template in DTSL to her partner.
Cloud partners can offer a new service to their customers
based on an integrated service of PaaS and other services.

Security: The DTSL divided into FTaaS and BTaaS. This
segmentation improves cloud security because customers
have access to the FTaaS services layer and this layer is
isolated from other value-added cloud services. This isolation
makes the DTSL more secure. In addition, any data security
and privacy method, such as [24] that can be implemented as
a template in the DTSL.

Standardization: One of the major issues in cloud
computing is a lack of standardization because this problem
causes vendor lock-in issue. However, DCCSOA provides a
dynamic service layer (DTSL) to enable different vendors to
offer the same front-end (FTaaS) service layer. When
different cloud vendors provide the same FTaaS to their
customers, the customers could transfer their data and
applications to other vendors, or they can transfer data and
applications to their private clouds through defining a similar
FTaaS.

V. A FRAMEWORK FOR COMPARISION OF DCCSOA WITH

RELATED WORK

Several parameters are important to evaluate software
architecture, such as quality attributes [25] (i.e., modifiability
and system independent). We consider the quality attribute to
provide a framework to compare the proposed architecture
against related works.

In Table 1, we present a comparison of the proposed
architecture (DCCSOA) to existing architectures, methods,
and cloud tools. In this table, ‘×’ denotes that the literature did
not provide information related to a feature of their platform,
or they did not consider the feature. We use the following
features in our comparison: (i) customization and
standardization with minimal modification to the architecture
and services; (ii) the capability of supporting interoperability,
and (iii) *aaSs’ support. In Table 1, each row represents a
study or a product of a conceptual model, a cloud architecture,
a cloud platform or a tool. Each column represents the
following items: the level of customization that indicates the
ease of customization with which vendors could customize
their own architectures; the level of standardization indicates
the level of modifications is needed to provide a standardized
cloud computing system; and the last column represents *aaS
capability that shows which architecture, platform or tools
could support *aaS feature with ease.

Low level Customization indicates customization at the

Implementation Level because each application or product

requires to be modified. For example, MC provides a solution

to modify each service to provide a customize cloud

computing system. Medium Level indicates customization at

the Conceptual Level and Architecture Level (unadoptable)

because both architecture and the existing applications are

required to be modified. For example, CRA provides a new

architecture without adopting new features with the existing

architecture. High Level indicates customization at the

Architecture Level with adopting new features with the

existing architecture. For example, CCIF provides adoptable

services through a uniform cloud interface. This level

requires minimal modifications to achieve customization

with standard model. The solutions of interest are high level

customization because they provide customized services with

minimal modifications to the existing architectures

(conceptual level) and existing services (implementation

level). DCCSOA provides an independent service (TaaS) to

provide customization on existing services. DCCSOA is not

required to modify the existing architecture or the existing

services to achieve customization with minimal

modifications. DCCSOA is only required to modify and adopt

the templates of each service.

 Low Level standardization represents the maximal

modifications to major cloud services to provide a standard

service between different cloud computing systems. For

example, all components are required to be modified in CCM

to provide a standardized cloud computing system. High

Level indicates standardization with less modifications. For

example, CCIF provides a solution for standardization

Table 1. A comparison between different cloud architectures and cloud platforms

Cloud

Architecture

Level of

Customization
Level of

Standardization
Level of

Interoperability

*aaS
Suppo

rt

C
o

n
ce

p
tu

a
l

L

ev
el

 MC [12] Low

(at Product

line level)

× × ×
A

rc
h

it
ec

tu
re

 L
ev

el

CCM

[21] Low (in

Implementati

on Level)

Low (if all

vendors

implement

standard

components)

Medium (via

OO paradigm)
×

SOCCA [15] × (Medium) × × ×

CCOA [16] × (Medium) × × ×

CRA [17]

Medium

Low (if all

vendors

implemented

based on CRA)

× ×

DCCSOA High (via

different

Templates at

Arch. level)

High (via

TaaS)

High (via

connection

between

services)

Yes

A
p

p
li

ca
ti

o
n

s
a

n
d

 O
p

en
 S

o
u

rc
e

T
o

o
ls

OGF Open

Cloud

Computing

Interface

[18]

×

Low (if all

vendors modify

their services

based on OCCI

specifications)

× ×

Cloud

Computing

Interoperabili

ty Forum

(CCIF)1
High

High (if all

vendors

implement

Unified Cloud

Interface)

Low (via

Unified Cloud

Interface)

×

Deltacloud

[19] Medium (at

API level)

High (via

REST-based

API)

× ×

DMTF 2 Medium (via

Common

Information

Model)

High (via

message

exchange)

Medium (via

message

exchange)

×

Open

Cloud

Consortium
3

Medium (at

API level)

High (via

REST-based

API)

Low (via

Unified Cloud

Interface)

×

Open Cloud

Computing

Interface

(OCCI) [20]

Medium (at

API level)

High (via

REST-based

API)

Low (via

Unified Cloud

Interface)

×

P
la

tf
o

rm

Open Stack

[19]
×

(private

cloud)

×

(private cloud)
Medium ×

through a uniform cloud interface. The solutions of interest

are high level standardization because it does not require

modifying the existing architecture or existing services to

achieve standard cloud computing. DCCSOA provides

different templates at the FTaaS to provide a uniform

interface for different types of the existing services that cloud

be implemented in different cloud vendor’s systems with

different architectures.

Low Level Interoperability indicates interoperability via
an external interface that causes high traffic connection to
external entity without an ability to control or modify the
interface. For example, CCIF provides an external uniform
interface that is disabled independently of a service and each
service is required to connect to the interface to provide
interoperability feature. Medium Level indicates
interoperability through implementation because each
component does not rely on an external interface but the
correspondence method requires to modify major services.
For example, CCM provides interoperability through object-
oriented paradigm that does not require to connecting to an
external interface and in this method each object requires to
be modified to achieve interoperability. High level indicates
interoperability with independent services and minimal
modifications. The solutions of interest are high level
interoperability solution that minimizes the modifications of
the architecture and services to achieve interoperability.
DCCSOA provides an independent service which is not relied
on external interface or required modification of service.

The last column shows the capability of *aaS. Other
related work (methods, platforms and architectures) did not
consider this feature as a part of their proposed solution.
DCCSOA allows a cloud vendor to define, deploy, customize
and standardize new services via FTaaS and BTaaS. DCCSOA
enables a cloud vendors to add new services as *aaS by
implement a heterogeneous service and adopt the service at
the front-end layer (FTaaS) to provide a customizable and
standardized service with minimal modifications and with
ease. This comparison shows our proposed architecture
(DCCSOA) allows vendors to define a dynamic, standardized
and customizable cloud architecture with the capability of
supporting interoperability and *aaSs. DCCSOA requires
minimal modifications to the architecture and services with
maximal the customization.

In addition to the framework in Table 1, we evaluate the

proposed architecture based on SOA evaluation [25]. The

evaluation is divided into the following topics: (1) Target

Platform; (2) Synchronous versus Asynchronous Services;

(3) Granularity of services; (4) Exception Handling and Fault

Recovery; (5) HTTPS or Message-Level Security; (6) XML

optimization; (7) Use of a registry of services; (8) Legacy

Systems Integration; (9) Service Orchestration.

These major topics are divided into minor evaluation

items as shown in Table 2. Icon “☺” in Table 2 shows the

advantage of the selected parameter topic in DCCSOA. For

instance, the proposed method in fine-grained services topic

provides advantage in flexibility feature. More details about

each parameter can be found in [25]. We consider the

following general scenario to evaluate the proposed method:

Scenario SC1: “User U1 uses a platforms as follow: P1

runs on the top of Cloud1 to provide service S1, and U1 is

willing to transfer data and application to P2 which is running

on the top of Cloud2 for the same service. When U1 needs to

transfer data and applications from P1 to P2, administrator of

P2 needs to define the same service on P2. Both platforms (P1

and P2) are bound to the target cloud vendor services (S1 and

S2).” Evaluation results

We evaluate the proposed method against a popular cloud

architecture, CCOA [16], based on SC1 scenario. Each item

(parameter) in Table 2 gives one credit, if the scenario passes

a given parameter. The evaluation result is shown in Figure 6.

The result shows the proposed method provides flexibility

with less modification over other existing methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new Dynamic Cloud

Computing Service-Oriented Architecture (DCCSOA). The

proposed architecture addresses the most existing cloud

computing issues, such as data and applications migration

between different clouds, transfer to cloud, or return back to

in-house IT, data and applications lock-in issues, and a lack

of standardization and customization. DCCSOA provides a

dynamic and customizable service layer (DTSL). The DTSL

provides simplicity these issues by defining a layer, template,

with the same feature in DTSL. A template is divided into

front-end (FTaaS) and back-end (BTaaS) layers. The defined

templates can be customized by a cloud vendor for different

groups of users. DCCSOA also allows different cloud

vendors to provide the similar cloud services through a

template that meets a standardization between different cloud

computing systems. We discussed how the proposed

architecture supports existing and future services (in general

*aaS) by using the DTSL at BTaaS that can be configured to

a specific cloud services. We evaluated the proposed method

Figure 6. The evaluation results

0

1

2

3

4

5

6

7

C
r
e
d
it

DCCSOA CCOA

based on SOA evaluation. The result shows that the proposed

architecture, DCCSOA, provides several advantages over

existing cloud architectures and platforms, such as minimal

modifications for providing standardization and

customization. As a future work, we will investigate the

quality of each attribute of DTSL, such as performance,

reliability, scalability, security by running an evaluation

method (i.e., scenario based). We will also consider

heterogeneous cloud computing systems to implement

DCCSOA with different templates in DTSL.

REFERENCES

[1] Mehdi Bahrami and Mukesh Singhal, “The Role of Cloud Computing

Architecture in Big Data”, Information Granularity, Big Data, and Computational

Intelligence, Vol. 8, pp. 275-295, Chapter 13, Pedrycz and S.-M. Chen (eds.),

Springer, 2015 http://goo.gl/0LxxlH

[2] Cacioppo, John T., and Gary G. Berntson, "The affect system architecture and

operating characteristics", Current directions in psychological science 8.5 (1999):

133-137.

[3] Bahrami, Mehdi. "Cloud Computing for Emerging Mobile Cloud Apps" Mobile

Cloud Computing, Services, and Engineering (MobileCloud), 2015 3rd IEEE

International Conference on. IEEE, 2015.

[4] IDC Enterprise Panel, 3Q09. Retrieved on 15 June 2014 at

http://blogs.idc.com/ie/?p=730

[5] Moreno-Vozmediano, Rafael, et.al. "Key challenges in cloud computing:

Enabling the future internet of services", Internet Computing, IEEE 17.4 (2013):

18-25, 2013.

[6] Sasikala, P. "Research challenges and potential green technological applications

in cloud computing", International Journal of Cloud Computing 2.1 (2013).

[7] Jafar Shayan, Ahmad Azarnik, Suriayati Chuprat, Sasan Karamizadeh, Mojtaba

Alizadeh ,"Identifying Benefits and risks associated with utilizing cloud

computing", International Journal of Soft Computing and Software Engineering

[JSCSE], Vol. 3, No. 3, pp. 416-421, 2013.

[8] Tsai, Wei-Tek, et al. "SimSaaS: simulation software-as-a-service", Proceedings

of the 44th Annual Simulation Symposium. Society for Computer Simulation

International, 2011.

[9] Chen, Yinong, Zhihui Du, and Marcos García-Acosta, "Robot as a service in

cloud computing", Service Oriented System Engineering (SOSE), 2010 Fifth

IEEE International Symposium on. IEEE, 2010.

[10] Kaufman, Cynthia C. “Getting Past Capitalism: History, Vision, Hope”, Rowman

& Littlefield, 2012.

[11] Barry M. Leiner, et al. “A brief history of the internet”, SIGCOMM Comput.

Commun. Rev. 39, 5 (October 2009), 22-31, 2009.

[12] Pine, B. Joseph., “Mass customization: the new frontier in business

competition”, Harvard Business Press, 1999.

[13] Hu, Bo, et al. "A CCRA Based Mass Customization Development for Cloud

Services", Services Computing (SCC), IEEE International Conference on. 2013.

[14] Perrey, Randall, and Mark Lycett, "Service-oriented architecture", Applications

and the Internet Workshops, Proceedings of Symposium on. IEEE, 2003.

[15] Tsai, Wei-Tek, Xin Sun, and Janaka Balasooriya, "Service-oriented cloud

computing architecture", Information Technology: New Generations (ITNG),

2010 Seventh International Conference on. IEEE, 2010.

[16] Zhang, Liang-Jie, and Qun Zhou, "CCOA: Cloud computing open architecture",

Web Services, ICWS 2009. IEEE International Conference on. IEEE, 2009.

[17] Liu, Fang, et al., "NIST cloud computing reference architecture", NIST Special

Publication 500 (2011): 292, 2011.

[18] Metsch, Thijs, and Andy Edmonds. "Open Cloud Computing Interface–

Infrastructure”, no. GFD-R in The Open Grid Forum Document Series, Open

Cloud Computing Interface (OCCI) Working Group, Muncie (IN). 2010.

[19] Bist, Meenakshi, Manoj Wariya, and Amit Agarwal. "Comparing delta, open

stack and Xen Cloud Platforms: A survey on open source IaaS", Advance

Computing Conference (IACC), 2013 IEEE 3rd International. IEEE, 2013.

[20] Grossman, Robert L., et al. "An overview of the open science data cloud"

Proceedings of the 19th ACM International Symposium on High Performance

Distributed Computing. ACM, 2010.

[21] Bahga, Arshdeep, and Vijay K. Madisetti, "Rapid Prototyping of Multitier Cloud-

Based Services and Systems", Computer 46.11 (2013): 76-83.

[22] Mehdi Bahrami, "Cloud Template, a Big Data Solution", International Journal of

Soft Computing and Software Engineering [JSCSE], Vol. 3, No. 2, pp. 13-17,

2013, Doi: 10.7321/jscse.v3.n2.2 URL: http://dx.doi.org/10.7321/jscse.v3.n2.2

[23] Pal, Subhankar, and Tirthankar Pal. "TSaaS—Customized telecom app hosting

on cloud" Internet Multimedia Systems Architecture and Application (IMSAA),

2011 IEEE 5th International Conference on. IEEE, 2011.

[24] Mehdi Bahrami and Mukesh Singhal, "A Light-Weight Permutation based

Method for Data Privacy in Mobile Cloud Computing" in 2015 3rd Int. Conf.

IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering (IEEE Mobile Cloud 2015), San Francisco, IEEE, 2015.

[25] Bianco, Philip, Rick Kotermanski, and Paulo F. Merson. "Evaluating a service-

oriented architecture", SEI, Carnegie Mellon University, 2007.

Table 2. Evaluation parameters for each topic

Topic 1 2 3 4 5 6 7 8

1
.T

a
rg

e
t

P
la

tf
o
r
m

P
la

tf
o

rm
 f

am
il

ia
ri

ty

R
u

n
-t

im
e

en
v
ir

o
n

m
en

t

fo
r

S
er

v
ic

e
U

se
r

R
u

n
-t

im
e

en
v
ir

o
n

m
en

t

fo
r

S
er

v
ic

e
P

ro
v

id
er

D
ev

el
o
p

m
en

t

E
n
v

ir
o
n

m
en

t

N
et

w
o

rk

In
fr

as
tr

u
ct

u
re

P
la

tf
o

rm
s

U
se

d
 b

y

E
x

te
rn

al
 S

er
v
ic

es

2
.A

sy
n

c
h

ro
n

o
u

s

(v
er

su
s

S
y
n

ch
ro

n
o
u

s

S
er

v
ic

es
)

M
o

d
if

ic
at

io
n

B
lo

ck
in

g
 t

im
e

☺
 I

n
se

rt
 a

n
 E

S
B

 o
r

o
th

er
 b

ro
k

er
in

g

so
ft

w
ar

e

O
v

er
h

ea
d
 o

f
re

ce
iv

in
g

ca
ll

 r
es

p
o
n

se
s

☺
 B

ac
k
g

ro
u
n

d

P
ro

ce
ss

in
g

 o
f

se
rv

ic
e

re
q

u
es

t

☺
 S

ca
la

b
il

it
y

☺
 I

n
d
ep

en
d
en

t

o
p

er
at

io
n

☺
 C

o
m

p
le

x
 e

rr
o
r

3
.

F
in

e
-g

r
a
in

e
d

se
r
v

ic
es

 (
v
e
rs

u
s

c
o

a
r
se

-g
r
a

in
e
d

se
r
v

ic
es

)

P
er

fo
rm

an
ce

M
es

sa
g
e

ra
te

☺
 F

le
x

ib
il

it
y

☺
 C

li
en

t
ce

n
tr

ic

O
v

er
al

l
co

st

T
es

ta
b

il
it

y

4
.

E
x

ce
p

ti
o

n

H
a

n
d

li
n

g
 a

n
d

F
a

u
lt

 R
e
co

v
er

y

fa
il

u
re

 o
r

re
so

u
rc

e

ex
h

au
st

io
n

 o
f

an

u
n

d
er

ly
in

g
 c

o
m

p
o
n

en
t

A
 f

o
rm

at
ti

n
g

v
io

la
ti

o
n

A
p

p
li

ca
ti

o
n
 b

u
si

n
es

s

lo
g

ic
 d

ef
ec

ts

B
u

si
n

es
s

ru
le

fa
il

u
re

s

In
te

rm
it

te
n
t

fa
il

u
re

s

5
.

H
T

T
P

S
 o

r

M
es

sa
g

e
-L

ev
e
l

S
e
c
u

r
it

y

E
m

b
ed

d
in

g
 s

ec
u

ri
ty

h
tt

p
s

en
cr

y
p

ts

In
te

ro
p
er

ab
il

it
y

S
er

v
ic

e
A

cc
es

s

A
u

th
o

ri
za

ti
o

n

In
te

ro
p
er

ab
il

it
y
 o

f

S
ec

u
ri

ty
 S

ta
n

d
ar

d
s

S
ec

u
ri

ty
 i

n
 l

eg
ac

y

co
m

p
o
n

en
ts

Id
en

ti
ty

 m
an

ag
em

en
t

p
o

li
cy

b
u

si
n

es
s

lo
g

ic
 S

ec
u

ri
ty

6
.

X
M

L

O
p

ti
m

iz
a
ti

o
n

T
h

e
si

ze
 o

f

fi
le

s

T
h

e
co

st

A
p

p
ro

p
ri

at
e

P
ar

si
n

g

V
al

id
at

io
n

C
o

m
p

re
ss

io

n

7
.

U
se

 o
f

a

R
e
g

is
tr

y
 o

f

S
e
r
v

ic
e
s

S
er

v
ic

e

M
an

ag
em

en
t

In
te

rf
ac

e

d
es

cr
ip

ti
o

n

S
ec

u
ri

ty

☺
 D

y
n
am

ic

S
er

v
ic

e
su

p
p
o

rt

H
is

to
ry

 a
n

d

V
er

si
o

n
in

g

L
if

e
C

y
cl

e
o

f

se
rv

ic
es

T
es

ti
n

g
 a

n
d

q
u

al
it

y

O
v

er
h
ea

d
 c

o
st

s

8
.

L
e
g
a

c
y

S
y

st
e
m

s

In
te

g
r
a

ti
o

n

D
at

ab
as

e

A
cc

es
s

D
at

ab
as

e

S
y

n
ch

ro
n

iz
at

io

n

D
ir

ec
t

A
P

I
ca

ll

W
eb

 s
er

v
ic

es

w
ra

p
p
er

s

E
S

B
 w

it
h

ad
ap

te
rs

9
.

S
e
r
v

ic
e

O
r
c
h

e
st

r
a

ti
o

n
 w

it
h

u
si

n
g

B
P

E
L

☺

M
o
d

if
ia

b
il

it
y

In
te

ro
p
er

a

b
il

it
y

P
er

fo
rm

an
ce

.

C
o

st

R
el

ia
b

il
it

y

Citation (To be appeared in):

Mehdi Bahrami and Mukesh Singhal, "DCCSOA: A Dynamic Cloud Computing Service-Oriented

Architecture" in Proceedings of 16th IEEE International Conference on Information Reuse and

Integration (IEEE IRI‘15), Aug 13-17, San Francisco, USA, IEEE, 2015.

