

An Efficient Parallel Implementation of a
Light-weight Data Privacy Method for Mobile

Cloud Users

Mehdi Bahrami, Dong Li, Mukesh Singhal

Cloud Lab

University of California, Merced
{mbahrami;dli35;msinghal}@ucmerced.edu

Ashish Kundu

IBM Thomas J. Watson Research Center

Yorktown Heights, NY, USA
akundu@us.ibm.com

Abstract—Cloud computing provides an opportunity to
users to outsource their data and applications. However,
data privacy is one of the key challenges for the users who
are outsourcing data on some transparent cloud servers.
Data encryption is the best option to protect users’ data
privacy on the cloud. However, computation overheads of
encryption methods could be expensive to some small
computing machines, such as mobile or IoT devices with
limited resources, such as battery. In our previous study,
we developed a light-weight Data Privacy Method (DPM)
based on a chaos system that uses a Pseudo Random
Permutation (PRP) to scramble the content of original
data. Although the nature of PRP is against parallelization,
we provide an efficient parallel algorithm to scramble a file
while the file splits into multiple chunks. The parallel DPM
avoids an adversary to access the original data (e.g., by
using a brute-force attack), when the size of each scrambled
data is large enough. In this paper, we accelerate DPM on
a Graphic Processing Unit (GPU) by using NVIDIA CUDA
platform for implementation. We assess the generated
shuffle addresses from pseudo-random and the distribution
of randomness when the computation on data is
parallelized on a multiple GPU-cores. A set of rigorous
evaluation results shows that the parallel DPM provides a
superior performance over tradition DPM when the most
time consuming of native CUDA parallel functions have
monitored. We also perform a security analysis of parallel
DPM to ensure it is secure and it is a cost effective model to
protect users’ data privacy in a cloud environment.

Keywords—GPU; Cloud Computing; Parallel Computing;
Data Privacy; Cloud Privacy;

 INTRODUCTION
Cloud Computing and parallel computing paradigms

introduce several advantages for processing heavy
computation methods. Our study in this paper is based on
these two paradigms which are described in the following
sub-sections.

 Cloud Computing

Cloud computing is an emerging technology that
combines of distributed systems, and virtualization
technology to offer new computing concepts. A cloud

computing system shares all available resources with
multiple users, and each user is billed base on pay-per-
use model or similar payment model. The cloud enables
users to increase or decrease their resources on-the-fly
Cloud computing has been used in different disciplines,
such as mobile computing, robotics when data is
outsourced on the cloud. Mobile Cloud Computing
(MCC) paradigm allows mobile users to outsource their
data and applications to the cloud and MCC enables
mobile users to run complex application on server-side.
However, there is a tradeoff in MCC between processing
faster of data and saving power resources, which is
critical for mobile devices. In particular, using cloud
computing on mobile devices is a challenge because not
all applications are able to efficiently outsource data to
the cloud [1]. For instance, if a user outsources data to the
cloud by using an application but the application drains
the battery due to periodically download/upload files, the
application is not efficient to be used. The trade-off
between power resource and computation speed are
critical in MCC. Data privacy is another parameter when
users outsource their data to MCC. Data security and
network security methods can be used in order to protect
user privacy in cloud computing systems. However, using
complex security methods on mobile devices raise
resource limitation challenge [2]. Therefore, not all
complex security methods are able to protect user data
privacy by providing a balance between resource power
and computation speed.

 Parallel Computing

Parallel computing has been popular since computing
machine introduced. Parallel computing allows complex
algorithms to be run in parallel in order to increase the
computation speed.

Recently, the implementation of parallel computing
algorithms has been transferring from massive server
machines to small personal computers when open-forums
and corporations have introduced new platforms that
allows users to have efficient parallel computing on

personal computers. For instance, CUDA platform uses
Graphics Processing Unit (GPU) and it was introduced
by NVIDIA. This platform enables a user or even a mobile
user to process a procedure in parallel that needs intensive
computation. The GPU-based computing paradigm of
parallel computing allows a device to use one or multiple
GPUs to perform heavy computations where each GPU
consist of thousands of small and low speed cores.
Regularly, each submitted task to a core is a repeated
computing process that each instruction does not need
heavy computation. GPU-based computation improves
the performance of processing of complex methods by
parallelizing small tasks of a complex method on each
GPU core. In our previous study, we developed a light-
weight data privacy method (DPM) [2] that uses a chaos
system [6] based on Pseudo Random Permutation (PRP)
to scramble data. DPM uses pre-generated arrays that
contain random addresses of chunks of data. The DPM
provides a superior performance over other existing data
security methods that needs heavy computation, such as
Advanced Encryption Standard (AES) [8].

 Threat Model
In this section, we are describing the specific threats

that our proposed technique shall protect the privacy
against.

If a mobile cloud user wishes to outsource her photos
to a cloud, such as Google Drive, Dropbox, but she would
not like to share the original content with the cloud
vendor, she may encrypt the content and submit the
encrypted photos to the cloud. However, encrypting each
file may drain the battery power in short period time.
Another option, she might use a PRP method to scramble
the content of all photos based on bits. Then, submit the
scramble data of the photos to the cloud. In this case, the
PRP generator should be secure and use a lengthy chunk
of data (e.g., using a lengthy size of bits) to permute the
original content and then submit it to the cloud. As
another example, if a user submits a text file or a database
file, she might use PRP to scramble the original content
in order to submit a confusion content to the cloud. In the
case of a database, a query also can be performed on a
scrambled data without reconstructing the original
content [7]. Generally, our proposed method shall use
available resources on a mobile device (e.g., cell phone)
to scramble the original content. Our proposed method
uses GPU on mobile device to parallelize the method in
order to save device’s power resources and process the
method faster than device CPU. In addition, public
analysis tools for data analysis from cloud vendors, or
their third-party applications are not able to simply access
the original user’s photo, text file, or database. For
instance, third-party application and bulk data analysis
tools are not able to process users’ data without
reconstructing the original data from scrambled data. If
users use a complex model of PRP, then reconstructing

the original file would be more difficult for cloud vendors
or their-third party partners.

In the previous study, we describe how a mobile
device access to the shuffle addresses for different chunk
sizes of an original file. However, in this paper, we
consider implementation of DPM on GPU to generate
PRP numbers to permute the original content and
outsource scrambled content to a cloud that does not
allow bulk data analysis review user’s content. The GPU-
based DPM enables the process to be run on GPU core
instead of CPU in order to improve DPM performance.

The rest of the paper is organized as follows: the next
section presents the motivation of the study and the major
challenges to maintain data privacy while using cloud
computing. Section III presents the related work.
Section IV presents the background of this study.
Section V presents the proposed method on GPU. The
experimental setup and its results are described in
Section VI. The security analysis of DPM presents in
Section VII which shows the security assumptions and the
level of security for the proposed method. Finally, Section
VIII concludes the study.

 MOTIVATION
The following two options can be considered for

shuffling data: (i) using an online PRP generator to
produce shuffle addresses; (ii) using a set of pre-
generated arrays of PRP [7] (offline mode). The first
option causes an issue on a mobile device because the
computation time of generating PRP is expensive on
mobile devices. The second option is preferred because it
removes additional costs for generating PRP. However,
it uses mobile device storage that could cause indirect
issue. In this paper, we consider the first option but we
generate arrays of PRPs on-the-fly and the process
distributes to multiple cores of a GPU in order to reduce
computation time.

The important challenge which is our focus is data
privacy for mobile users because when a user outsources
data to the cloud, data privacy can be violated by the
cloud vendor, the vendor’s partners, hackers, malicious
entities or even by other cloud users.

 RELATED WORK
To the best of our knowledge, no research has been

published in the area of implementation of PRP on GPU
because its nature of sequential when it stands against
parallelism concept. However, some studies have been
published for implementation of other random number
generators on GPU or FPGA. For instance, Thomas
et al. [11] compare the performance of three types of
random number generators on CPU, GPU and FPGA. In
this study, authors use an appropriate algorithm, such as
the uniform, Gaussian, and exponential distribution for
each hardware platform in order to have efficient power
peaks and computations. This study shows that the

performance of the different random-number generators
relies on their platform. In this paper, we consider CUDA
platform on GPU in order to optimize the performance
and power consumption which is not investigated in [11].
In another study, Tsoi et al. [10] implemented two
different random number generators for embedded
cryptographic applications on FPGA. The first is a true
random number generator (TRNG) [13] based on
oscillator phase noise, and the second is a bit serial
implementation of a Blum Blum Shub (BBS) [18]. The
study shows that TRNG is recommended for low-
frequency-clock processors. Since GPU often consists of
thousands of cores and with low speed and smaller than
CPU cores, we consider this fact for designing small-
scale generators in our study which is described in
Section V. This consideration makes PRP to be highly
suited to the target platform. In the similar study by
Manssen et al. [15], the authors evaluate different
random number generators with different granularity.
There are some studies on processing AES on GPU [3, 4,
5] or using the similar method for the security processing
[9] on a GPU.

 BACKGROUND OF THE STUDY
DPM splits an original file into several chunks. The

method uses a pattern to split original file into multiple
files when each file consists of random part of the original
file. Then, DPM selects a set of bits (chunk) of each split
file and finally it scrambles the content of each chunks by
using a chaos system [6]. The DPM saves 72% battery
power over AES encryption method because DPM can be
run in O(1) time complexity for each chunks and it
requires O(n) for n chunks.

Pseudorandom Permutation (PRP) is the key module
of many methods, such as encryption and simulations as
well as DPM. PRP is defined as follows:

{0,1} ݃݊݅ܽ݉ ݏ݅ ܨ ൈ {0,1}௦ → {0,1} (1)

 :݂݅ ܴܲܲ ܽ ݏ݅ ܨ

(i) ∀ݓ ܭℎ݁ܭ ݁ݎ ∈ {0,1}௦, ܨ is a bijection of

{0,1} → {0,1}

(2)

ሺ݅݅ሻ ∀ݓ ܭℎ݁ܭ ݁ݎ ∈ {0,1}௦ ܨሺݔሻ is an
efficient algorithm.

(3)

ሺ݅݅݅ሻ

:ܦ Prሺܦி಼ሺ1ሻ = 1ሻ െ Pr ሺܦሺ1ሻ = 1ሻ|
൏ , ሻݏሺߝ ܭ ݁ݎℎ݁ݓ ← {0,1}௦

(4)

where Pr ሺ. ሻ is the probability of raising the input event.

As discussed in (4), the PRP provides a uniform
distribution between all generated elements of F. This
property of PRP passes the important perfect secrecy

parameter which was introduced on Shannon’s
theory [12] for encryption functions [2].

The main function for generating pseudo number is
defined as follows:

ାଵܨ = ሺ1ܨߤ െ ሻ (5)ܨ

where ܲ ∈ {0,1} and ߤ is a parameter of this equation.

In the classic chaos system problem, if ߤ is selected
between 3.569945 ߤ 4, and with an initial value of
ܨ = ሾ0,1ሿ ܨ , provides a complex chaos model [2]. F
uses a set ߦ to provide a non-convergent, non-periodic
pseudo random numbers [2]:

ߦ = { ܲ}ୀ
ఠ (6)

where ߱ is maximum number of an original content.

The DPM splits the content of an original content to
߱ number of chunks. Then, it uses ߦ to shuffle the
content of chunks. We employed conflict-remover
algorithm which is described in [16] to provide a set of
unique addresses for each chunks based on input
parameter (ߤሻ and selected pattern by a user.

 THE PROPOSED METHOD
The main challenges of DPM are: (i) generating ߦ (a

set of addresses which is used to permute an original input
chunk (ii) Applying ߦ to the original chunk in order to
have permutated data. Both processes need heavy
computation and we can accelerate DPM by processing
both on GPU. However, we face several challenges on
both processes when we implement DPM in parallel. The
following sub-sections explain these challenges as well
as a possible solution for each.

 Generating ࣈ

The original content which is an input to DPM comes
from different sources and it depends on the type of
application where DPM is employed. For instance,
[7] employed DPM for a database system management
system where the input is a set of database queries;
[2] employed DPM for protecting data privacy of JPEG
files and each chunks is composed of one or multiple
Minimum Coded Unit (MCU) blocks; and for healthcare
electronic systems [16] where data privacy plays a key
role.

The nature of generating a set of ߦ is a sequential
process that stands against data parallelism. We consider
ࣧ as a 2D-array for generating PRP addresses in
parallel that allows us to use each GPU core to generate
different sets of ߦ. Each GPU core is corresponding to
partial part of ߦ. We map the original input (ࣞ) to a 2D-
array (ࣧ) to maximize the usage of GPU cores. Then,
we apply ߦ to ࣧ in the next step. Figure 1 shows an
example of mapping from the original input (ࣞ) to a 2D-

array (ࣧ). In this figure, ࣧ = ⋃ ఋܦ
ୀ where ߜ is the

maximum number of chunks for the original content/file
and ߢ is the size of each chunk. ߦ generates ݊ set of ߦs
for ݉ chunks.

Code I shows how each thread get same seed with
different sequence numbers. RowCell and ColCell
represent the number of rows and columns of ࣧ, ,
respectively. This configuration provides the best
performance because each block of threads receives a
unique initial seed and each block provides a unique set
of ߦ [7]. During the initialization (config function)
ColCell is considered as a parameter of application.
Let’s RowCell and ColCell be different size of ࣧ.
In our experiment (see Section 7), we describe different
configurations for the application in order to implement
different size of ࣧ.

Code II shows an implementation of generating of
RowCell and ColCell of the PRP generator function
in the main() function. In this code, Line 1 allocates space
for results on host. Space allocation for results on device
is defined in Line 2-4. The ߦ set is configured in Line 4
and PRP generator is called in Line 6.

 Apply ߦ to ࣧ

When random addresses have been generated in
previous section and it is stored in ߦ , then different
solutions are available for applying ߦ to ࣧ as follows:

 The first option is transferring ߦ to the host-
memory and shuffle ࣧ on host-memory: This process
needs ܱሺ݊ሻ where ݊ is the length of ߦ. However, the

computation on shuffling process of data on host-
memory cannot be implemented in parallel on device.

 The second option, is transferring ࣧ to device
memory, and shuffle ࣧ based on ߦon device memory.
Although this process still needs ܱሺ݊ሻ computation
time where ݊ is the length of ߦ. This process can be
implemented in parallel on device that accelerate
shuffling process of data.

Let’s consider the second option for the
implementation of applying ߦ to ࣧ . In this case, there
are two elements of ࣧ that needs to be exchanged when
the PRP shows that an exchange is required between two
 bits, ࣧwhere it is the original address and ࣧ where-ߢ
it is the destination address for the exchange. If we
consider each element of ࣧ as a ߢ bit element, then

minimum memory requirement for the implementation is
 When DPM needs to exchange the content of two bits .ߢ
of ࣧ (ࣧ and ࣧ) based on ߦ , one of the following
possibilities can raise: ሺ݅ሻ ࣧ = ࣧ : In this case, if we
assume that ߢ = 1 then no exchange is required because
the content of both bits are the same and we can save the
computation overhead of exchanging the content. If ߢ
1 then the ߢ-bits of the content from ࣧ should be equal

1: hostResults = (unsigned int *)calloc(RowCell * ColCell, sizeof(int));

2: cudaMalloc((void **)&devResults, RowCell * ColCell *sizeof(unsigned int));

3: cudaMemset(devResults, 0, RowCell * ColCell *sizeof(unsigned int));

4: cudaMalloc((void **)&devStates, RowCell * ColCell * sizeof(curandState));

5: config << <RowCell, ColCell >> >(devStates);

6: DPM_PRP << <RowCell , ColCell >> >(devStates, Count, devResults);

Code II. Main function for Calling the PRP generator

// two parameters of the size of Sai (M:
RowCell * ColCell)
const int RowCell = 128;
const int ColCell = 128;
__global__ void config(curandState *state)
{
 int id = threadIdx.x + blockIdx.x * ColCell;
 curand_init(1234, id, 0, &state[id]);
}

Code I. The config function for initialization of a thread

ࣧ

ࣞ

ࣞ

 ߦ
 Figure 1. An example of mapping and exchanging process memory

 ࣧ

݆ࣧ

ℂଵ,

ℂ,

to all ߢ -bits of ࣧ. ሺ݅݅ሻ ࣧ ് ࣧ : The exchange is
required. In this case ࣧ

ᇱ and ࣧ′ are the final value of
the exchange process on ࣧ and ࣧ after exchange
process, respectively. Table I. summarizes these two
different conditions.

Table I. The summarize of exchange process

ࣧ ࣧ ࣧ′ ࣧ′ Exchange
is

required
0 0 0 0 N
0 1 1 0 Y
1 0 0 1 Y
1 1 1 1 N

 We also optimize the implementation of shuffling
process of the two different condition. The following

rules are used in order to avoid additional host memory
exchange computation:

ࣧ
ᇱ = ൫ ࣧ⨁ ࣧ൯⨁ ࣧ

= ሺ ࣧ⨁ ࣧሻ⨁ ࣧ

= 0 ⨁ ࣧ

(7)

ࣧ
ᇱ = ൫ ࣧ⨁ ࣧ൯⨁ ࣧ

= ൫ ࣧ⨁ ࣧ൯⨁ ࣧ

= 0 ⨁ ࣧ

(8)

 Therefore, by using Equation 7 and 8, we do not need
to run the exchange function in order to optimize the
exchange function.

 EVALUATION OF PROPOSED METHOD

 Experimental setup

We implemented the proposed method on a PC with CPU
i7-4790, x64 based processor, device memory of 12 GB
and a GeForce GT 720 GPU with 1,001,000 memory
clock rate (kHz), 64 bits Memory Bus, 16.016000 GB/s
Peak Memory Bandwidth (GB/s), and 16GB memory.
We used NVIDIA GPU Computing Toolkit v7.0 and we
profiled (logging of NVIDIA functions) the executions of
the proposed method with NVIDIA profile v7.0.

In order to record each step of execution, we used
NVIDIA profiler in the implementation code where it
requires to be started or stopped by the following code:

// start profiling of part of code
cudaProfilerStart();

// stop profiling of part of code
cudaProfilerStop();

By default, the first call of CUDA API starts the profiler
(in this case cudaGetDevice initializes the profiler). An
example of output of the profiler is shown in the List 1.
In this example, the profiler shows that 10384 API calls
(CUDA API) where 98.27% of time is taken in execution
of cudaMemcpy which includes the following functions:

 cudaMemcpyHostToHost,
 cudaMemcpyHostToDevice,
 cudaMemcpyDeviceToHost, or

cudaMemcpyDeviceToDevice.

 Experimental Results

First, we consider the generator of ߦ sets, and the
distribution values for each set over different iterations.

2.a. The result of a set of ߦ

2.b. The result of six sets of ߦ with different initial

values
Figure 2. The evaluation results

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

==10384== NVPROF is profiling process 10384, command: calltester
==10384== Profiling application: calltester
==10384== Profiling result:
==10384== API calls:
Time(%) Time Calls Avg. Min. Max. Name
 98.27% 7.18901s 3 2.39s 1.39s 4.12s cudaMemcpy
 1.54% 112.41ms 2 56.20ms 435.92us 111.97ms cudaMalloc
 0.18% 13.240ms 385 34.38us 2.85us 11.74ms cudaLaunch
 0.00% 313.33us 83 3.77us 0ns 147.11us cuDeviceGetAttribute

List 1. The result of “nvprof calltester”

These analysis allows us to evaluate the security of the
method when the values have been generated with
different GPU-cores. If there is a conflict between values
of different sets, then it shows security issue in the
proposed method. In the future, we plan to evaluate the
generator with other statistical models, such as chi-square
test of independence [17].

Figure 2.a shows a set of ߦ and Figure 2.b shows six
sets of ߦ with different initial values. In these figures,
each point represents a value of ߦ, X-axis represents the
iteration number and Y-axis represents the value of PRP
function. These figures illustrate the proposed method
generates different sets of ߦ when each one does not
introduce any conflict to other values of other ߦ sets.
Figure 3 shows the distribution variances of ߦ where each
set of ߦ values is illustrated in Figure 2. As shown in this
figure, the values of each set is uniformly distributed
through the range of ߦ values. As clearly shown in
Figure 2.b and 3.b there is not any spot pattern or a cluster
pattern that helps an attacker to estimate values by
knowing values (partial values) of one or different ߦ sets.

Overlap of different values from different sets of ߦ is
one of the security challenge for the proposed method.
Each ߦ provides a permutation model. An overlap
between different value of ߦ sets, allows an attacker to
understand a permutation model by knowing one or
multiple permutation models. Another challenge is
finding a pattern between different subsets of ߦ . As
shown in Figure 3, different curves do not show similar
patterns in any curves even for one set of ߦ.

Second, we considered the performance of the
proposed method by profiling the behavior of DPM for:
(i) generating different sets of ߦ on different size of a 2D-
array; and (ii) permutation process. As shown in Figure 4
and 5, we assessed the performance of generating ߦ
values with the following sizes: 32*64, 64*64, 64*128,
128*128. X-axis represents the size of input. Y-axis in
Figures 4.a illustrates the number of calls. Y-axis in
Figures 4.b-d represent the computation time

(milliseconds). Figure 5 shows the behavior of
CudaMemcpy where it is responsible for transferring data
from CPU to GPU. As shown in this evaluation, the blue
curve indicates that it is increased linearly. As a result, the
proposed method is capable to increase the size of input
data with minimal transferring cost between CPU and
GPU.

The evaluation results show that the 2D-array with the
size of 128*128 provides better performance over other
input sizes. However, the energy consumption is another
parameter that can be assessed [18] in order to provide an
overall result for this performance evaluation. This
evaluation also provides an overall view of the
performance of the proposed method.

 SECURITY ANALYSIS
In this section, we describe the security assumption

and the level of security for the proposed method.

Let ܵܥሺࣧሻ be the scramble function of DPM on n-
core GPU. Perfect secrecy as described in Shannon
theory [12] is the probability of two different encrypted
messages and in our study, ܵܥሺ ࣧሻ and ܵܥ൫ ࣧ൯, which
is defined as follows:

∀݉, ݉ଵ ∈ |݉| ܯ = |݉ଵ| ܽ݊݀ ܿ ∈ (9) ܥ

ሺPrሾܵܥሺߦ , ݉ሻ = ܿሿሻ = ሺPrൣܵܥ൫ߦ , ݉ଵ൯ = ܿ൧ሻ (10)

where ߦ and ߦ are defined as different sets of PRP with
different initial values, ߤ and ܲ is defined in
Equation 5. ܯ is a set of all original messages and ܥ
consists of permutated messages based on a set of ߦ
values.
Lemma 1: DPM has perfect secrecy.
To proof Lemma 1, we must proof the following sub-
lemmas, Lemma 1.1 and Lemma 1.2 as follows:

Lemma 1.1: By a given c (scrambled data), the adversary
cannot learn about ݉ and ݉ (two different original
messages). Therefore, we must generate different outputs
for all different inputs.

3.a. A set of 3 ߦ.b. Six sets of ߦ
Figure 3. Uniform distributions of ߦ

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 0

20

40

60

80

100

120

0 10 20 30 40 50 60

Proof: Each separate original content in DPM should
be scrambled with different sets of ߦ to avoid similarity
between ܵܥሺߦ, ݉ሻ and ܵܥ൫ߦ, ݉൯. Each set of ߦ is
generated by ℂGPU-core independently. Each core
uses different initial values to generates different ߦ sets
without any conflict with other ߦ sets, or with minimal
partial conflict to other sets.

݈݁݅ܨ∀ , ,ߞሺܥሾܵݎܲ :ܿ ሻݐ݊݁ݐ݊ܥ = ܿሿ

=
ߞ# ∈ Ζ such that SCሺߞ, ሻݐ݊݁ݐ݊ܥ = ܿ

|Ζ|

Since the intitalization value of each ߦ is different for
each GPU-core (the security assumption), then an
attacker by accessing to the scrambled content is not able
to learn about ݉ and ݉ , if and only if the attacker
cannot learn about sequence of ߦ values which means the
attacker should not have knowledge of parameters of ߦ
generator. As our evaluation of generated PRP shows in
Figure 2 and 3, then the attacker is not able to learn about
݉ and ݉ by accessing to ܿ. ∎
Lemma 1.2: The ߦ generator has perfect secrecy for all
GPU cores.
Proof: The PRP must provide a uniform distribution for
all entries of n bits as follows:

ܲ: ܷ → ሾ0,1ሿ ܿݑݏℎ ݐℎܽݐ ܲሺݔሻ = 1
௫∈

where ܷ = {0,1}.

ݔ ∀ ∈ ܷ: ܲሺݔሻ =
1

|ܷ|

4.a 4.b

4.c 4.d

Figure 4. Evaluation Results for different size of ߦ

0

5

10

15

20

32*64 64*64 64*128 128*64 128*128

of

 T
ho

us
an

ds
 C

al
ls

Input Size

API Calls

0

50

100

150

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Input Size

cudaMalloc

12.2

12.4

12.6

12.8

13

13.2

13.4

32*64 64*64 64*128 128*64 128*128

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Input Size

cudaLaunch

0

0.1

0.2

0.3

0.4

0.5

32*64 64*64 64*128 128*64 128*128

Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Input Size
cuDeviceGetAttribute cudaGetDeviceProperties

Figure 5. Performance of CudaMemcpy

0

1000

2000

3000

4000

32*64 64*64 64*128 128*64 128*128Co
m

pu
ta

tio
n

Ti
m

e
(m

s)

Input Size

cudaMemcpy

Since each GPU-core generates an unique set of ߦ
values, then the probility of all ߦ sets are equal and

ܲሺݔሻ =
ଵ

||
 for each GPU-cores satisfied the generator

condition of perfect secrecy. ∎

 CONCLUSION AND FUTURE WORK
 Cloud computing offers new oportutanties to users to
efficiently outsource data and applications. Data privacy
is one of the major issues in cloud computing systems. In
our previous study, we introduced a light-weight data
privacy method (DPM) that allows users to prototect their
data before submitting original file to the cloud. Graphic
Process Units (GPU) allows parallel processes to be run
efficiently. GPU kernel is able to process
computationally intensive tasks on client side by using a
GPU platform, such as NVIDIA CUDA Toolkit.

In this paper, we introduced a solution to mobile cloud
users to accelerate DPM on multicore GPUs. This study
shows that DPM can be implemented securly and
efficiently on multiple independent GPU-cores. The
proposed method protects users data privacy by
processing independent pesudo-random number
generator on each core when it is complying with perfect
secrecy requirements. We evaluated the proposed method
by performing rigorous assessments on performance and
the security. On performance side, we ran different
number of parallel processes in order to assess the
computation time on each input size. We implemented
the proposed method when it is being parallelized on a
2D-array of parallel processes where each thread block
assigned by different initial values to generate different
and unique pesudo-random numbers. The generated
numbered are used for permutation of an original file. On
security side, we considered the security assumption of
the method and we assessed the result of pseudo-random
numbers, distribution of this random numbers and perfect
security assessments to analysis the security of the
proposed method on multiple GPU cores.

We plan to asses the performance of the proposed
method with different platforms that can be implemented
on different GPU architectures. For instance, we will
implement the proposed method by using OpenMP that
help us to evaluate and to compare the current
performance against other GPU architcetures/platforms.
We will also invastigate the energy consumption [18] of
the method on different GPU platforms and architectures.

REFERENCES

[1] Mehdi Bahrami and Mukesh Singhal, “The Role of Cloud
Computing Architecture in Big Data”, Information Granularity,
Big Data, and Computational Intelligence, Vol. 8, pp. 275-295,
Chapter 13, Pedrycz and S.-M. Chen (eds.), Springer,
2015 http://goo.gl/0LxxlH

[2] Mehdi Bahrami and Mukesh Singhal, "A Light-Weight
Permutation based Method for Data Privacy in Mobile Cloud
Computing" in 2015 3rd Int. Conf. IEEE International

Conference on Mobile Cloud Computing, Services, and
Engineering (IEEE Mobile Cloud), San Francisco, IEEE, 2015.

[3] Manavski, Svetlin. "CUDA compatible GPU as an efficient
hardware accelerator for AES cryptography." Signal Processing
and Communications, 2007. ICSPC 2007. IEEE 2007.

[4] Shao, Fei, Zinan Chang, and Yi Zhang. "AES encryption
algorithm based on the high performance computing of GPU."
Communication Software and Networks, 2010. ICCSN'10.
Second International Conference on. IEEE, 2010.

[5] Li, Qinjian, et al. "Implementation and analysis of AES
encryption on GPU." High Performance Computing and
Communication & 2012 IEEE 9th International Conference on
Embedded Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on. IEEE, 2012.

[6] Han, Zhang, et al. "A new image encryption algorithm based on
chaos system." Robotics, intelligent systems and signal
processing, 2003. Proceedings. 2003 IEEE international
conference on. Vol. 2. IEEE, 2003.

[7] Mehdi Bahrami and Mukesh Singhal, "CloudPDB: A Light-
weight Data Privacy Schema for Cloud-based Databases",
2016 IEEE International Conference on Computing, Networking
and Communications, Cloud Computing and Big Data, Kauai,
Hawaii, Feb 2016.

[8] Katz, Jonathan; Lindell, Yehuda (2007). Introduction to Modern
Cryptography: Principles and Protocols. Chapman and
Hall/CRC.

[9] Wang, Wei, et al. "Accelerating fully homomorphic encryption
using GPU." High Performance Extreme Computing (HPEC),
2012 IEEE Conference on. IEEE, 2012.

[10] Tsoi, Kuen Hung, K. H. Leung, and Philip Heng Wai Leong.
"Compact FPGA-based true and pseudo random number
generators." Field-Programmable Custom Computing Machines,
FCCM 2003. 11th Annual IEEE Symposium on. IEEE, 2003.

[11] Thomas, David Barrie, Lee Howes, and Wayne Luk. "A
comparison of CPUs, GPUs, FPGAs, and massively parallel
processor arrays for random number generation." Proceedings of
the ACM/SIGDA international symposium on Field
programmable gate arrays. ACM, 2009.

[12] C.E. Shannon, “Communication Theory of Secrecy Systems",
Bell System Tech. J., Vol. 28, 1949, pp. 656-715.

[13] Killmann, W., Schindler, W.: AIS 31: Functionality Classes and
Evaluation Methodology for True (Physical) Random Number
Generators, version 3.1, Bundesamt für Sicherheit in der
Informationstechnik (BSI), Bonn (2001)

[14] Blum, Lenore, Manuel Blum, and Mike Shub. "A simple
unpredictable pseudo-random number generator." SIAM Journal
on computing 15.2 (1986): 364-383.

[15] Manssen, Markus, Martin Weigel, and Alexander K. Hartmann.
"Random number generators for massively parallel simulations
on GPU." The European Physical Journal Special Topics 210.1
(2012): 53-71.

[16] Mehdi Bahrami, and Mukesh Singhal. "A dynamic cloud
computing platform for eHealth systems" 2015 17th International
Conference on E-health Networking, Application & Services
(HealthCom). IEEE, 2015.

[17] McHugh, Mary L. "The chi-square test of independence."
Biochemia Medica 23.2 (2013): 143-149.

[18] Huang, Song, Shucai Xiao, and Wu-chun Feng. "On the energy
efficiency of graphics processing units for scientific computing."
Parallel & Distributed Processing, IPDPS 2009. International
Symposium on. IEEE, 2009.

