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Abstract—Cloud computing provides an opportunity to 
users to outsource their data and applications. However, 
data privacy is one of the key challenges for the users who 
are outsourcing data on some transparent cloud servers. 
Data encryption is the best option to protect users’ data 
privacy on the cloud. However, computation overheads of 
encryption methods could be expensive to some small 
computing machines, such as mobile or IoT devices with 
limited resources, such as battery. In our previous study, 
we developed a light-weight Data Privacy Method (DPM) 
based on a chaos system that uses a Pseudo Random 
Permutation (PRP) to scramble the content of original 
data. Although the nature of PRP is against parallelization, 
we provide an efficient parallel algorithm to scramble a file 
while the file splits into multiple chunks. The parallel DPM 
avoids an adversary to access the original data (e.g., by 
using a brute-force attack), when the size of each scrambled 
data is large enough. In this paper, we accelerate DPM on 
a Graphic Processing Unit (GPU) by using NVIDIA CUDA 
platform for implementation. We assess the generated 
shuffle addresses from pseudo-random and the distribution 
of randomness when the computation on data is 
parallelized on a multiple GPU-cores. A set of rigorous 
evaluation results shows that the parallel DPM provides a 
superior performance over tradition DPM when the most 
time consuming of native CUDA parallel functions have 
monitored. We also perform a security analysis of parallel 
DPM to ensure it is secure and it is a cost effective model to 
protect users’ data privacy in a cloud environment. 

Keywords—GPU; Cloud Computing; Parallel Computing; 
Data Privacy; Cloud Privacy; 

  INTRODUCTION 
Cloud Computing and parallel computing paradigms 

introduce several advantages for processing heavy 
computation methods. Our study in this paper is based on 
these two paradigms which are described in the following 
sub-sections. 

 Cloud Computing 

Cloud computing is an emerging technology that 
combines of distributed systems, and virtualization 
technology to offer new computing concepts. A cloud 

computing system shares all available resources with 
multiple users, and each user is billed base on pay-per-
use model or similar payment model. The cloud enables 
users to increase or decrease their resources on-the-fly 
Cloud computing has been used in different disciplines, 
such as mobile computing, robotics when data is 
outsourced on the cloud. Mobile Cloud Computing 
(MCC) paradigm allows mobile users to outsource their 
data and applications to the cloud and MCC enables 
mobile users to run complex application on server-side. 
However, there is a tradeoff in MCC between processing 
faster of data and saving power resources, which is 
critical for mobile devices. In particular, using cloud 
computing on mobile devices is a challenge because not 
all applications are able to efficiently outsource data to 
the cloud [1]. For instance, if a user outsources data to the 
cloud by using an application but the application drains 
the battery due to periodically download/upload files, the 
application is not efficient to be used. The trade-off 
between power resource and computation speed are 
critical in MCC. Data privacy is another parameter when 
users outsource their data to MCC. Data security and 
network security methods can be used in order to protect 
user privacy in cloud computing systems. However, using 
complex security methods on mobile devices raise 
resource limitation challenge [2]. Therefore, not all 
complex security methods are able to protect user data 
privacy by providing a balance between resource power 
and computation speed. 

 Parallel Computing 

Parallel computing has been popular since computing 
machine introduced. Parallel computing allows complex 
algorithms to be run in parallel in order to increase the 
computation speed.  

Recently, the implementation of parallel computing 
algorithms has been transferring from massive server 
machines to small personal computers when open-forums 
and corporations have introduced new platforms that 
allows users to have efficient parallel computing on 



 
 

personal computers. For instance, CUDA platform uses 
Graphics Processing Unit (GPU) and it was introduced 
by NVIDIA. This platform enables a user or even a mobile 
user to process a procedure in parallel that needs intensive 
computation. The GPU-based computing paradigm of 
parallel computing allows a device to use one or multiple 
GPUs to perform heavy computations where each GPU 
consist of thousands of small and low speed cores. 
Regularly, each submitted task to a core is a repeated 
computing process that each instruction does not need 
heavy computation. GPU-based computation improves 
the performance of processing of complex methods by 
parallelizing small tasks of a complex method on each 
GPU core. In our previous study, we developed a light-
weight data privacy method (DPM) [2] that uses a chaos 
system [6] based on Pseudo Random Permutation (PRP) 
to scramble data. DPM uses pre-generated arrays that 
contain random addresses of chunks of data. The DPM 
provides a superior performance over other existing data 
security methods that needs heavy computation, such as 
Advanced Encryption Standard (AES) [8].  

 Threat Model 
In this section, we are describing the specific threats 

that our proposed technique shall protect the privacy 
against.  

If a mobile cloud user wishes to outsource her photos 
to a cloud, such as Google Drive, Dropbox, but she would 
not like to share the original content with the cloud 
vendor, she may encrypt the content and submit the 
encrypted photos to the cloud. However, encrypting each 
file may drain the battery power in short period time. 
Another option, she might use a PRP method to scramble 
the content of all photos based on bits. Then, submit the 
scramble data of the photos to the cloud. In this case, the 
PRP generator should be secure and use a lengthy chunk 
of data (e.g., using a lengthy size of bits) to permute the 
original content and then submit it to the cloud. As 
another example, if a user submits a text file or a database 
file, she might use PRP to scramble the original content 
in order to submit a confusion content to the cloud. In the 
case of a database, a query also can be performed on a 
scrambled data without reconstructing the original 
content [7]. Generally, our proposed method shall use 
available resources on a mobile device (e.g., cell phone) 
to scramble the original content. Our proposed method 
uses GPU on mobile device to parallelize the method in 
order to save device’s power resources and process the 
method faster than device CPU. In addition, public 
analysis tools for data analysis from cloud vendors, or 
their third-party applications are not able to simply access 
the original user’s photo, text file, or database. For 
instance, third-party application and bulk data analysis 
tools are not able to process users’ data without 
reconstructing the original data from scrambled data. If 
users use a complex model of PRP, then reconstructing 

the original file would be more difficult for cloud vendors 
or their-third party partners. 

In the previous study, we describe how a mobile 
device access to the shuffle addresses for different chunk 
sizes of an original file. However, in this paper, we 
consider implementation of DPM on GPU to generate 
PRP numbers to permute the original content and 
outsource scrambled content to a cloud that does not 
allow bulk data analysis review user’s content. The GPU-
based DPM enables the process to be run on GPU core 
instead of CPU in order to improve DPM performance. 

The rest of the paper is organized as follows: the next 
section presents the motivation of the study and the major 
challenges to maintain data privacy while using cloud 
computing. Section III presents the related work. 
Section IV presents the background of this study. 
Section V presents the proposed method on GPU. The 
experimental setup and its results are described in 
Section VI. The security analysis of DPM presents in 
Section VII which shows the security assumptions and the 
level of security for the proposed method. Finally, Section 
VIII concludes the study.   

 MOTIVATION 
The following two options can be considered for 

shuffling data: (i) using an online PRP generator to 
produce shuffle addresses; (ii) using a set of pre-
generated arrays of PRP [7] (offline mode). The first 
option causes an issue on a mobile device because the 
computation time of generating PRP is expensive on 
mobile devices. The second option is preferred because it 
removes additional costs for generating PRP. However, 
it uses mobile device storage that could cause indirect 
issue. In this paper, we consider the first option but we 
generate arrays of PRPs on-the-fly and the process 
distributes to multiple cores of a GPU in order to reduce 
computation time. 

The important challenge which is our focus is data 
privacy for mobile users because when a user outsources 
data to the cloud, data privacy can be violated by the 
cloud vendor, the vendor’s partners, hackers, malicious 
entities or even by other cloud users.  

 RELATED WORK 
To the best of our knowledge, no research has been 

published in the area of implementation of PRP on GPU 
because its nature of sequential when it stands against 
parallelism concept. However, some studies have been 
published for implementation of other random number 
generators on GPU or FPGA. For instance, Thomas 
et al. [11] compare the performance of three types of 
random number generators on CPU, GPU and FPGA. In 
this study, authors use an appropriate algorithm, such as 
the uniform, Gaussian, and exponential distribution for 
each hardware platform in order to have efficient power 
peaks and computations. This study shows that the 



 
 

performance of the different random-number generators 
relies on their platform. In this paper, we consider CUDA 
platform on GPU in order to optimize the performance 
and power consumption which is not investigated in [11]. 
In another study, Tsoi et al. [10] implemented two 
different random number generators for embedded 
cryptographic applications on FPGA. The first is a true 
random number generator (TRNG) [13] based on 
oscillator phase noise, and the second is a bit serial 
implementation of a Blum Blum Shub (BBS) [18]. The 
study shows that TRNG is recommended for low-
frequency-clock processors. Since GPU often consists of 
thousands of cores and with low speed and smaller than 
CPU cores, we consider this fact for designing small-
scale generators in our study which is described in 
Section V. This consideration makes PRP to be highly 
suited to the target platform. In the similar study by 
Manssen et al. [15], the authors evaluate different 
random number generators with different granularity. 
There are some studies on processing AES on GPU [3, 4, 
5] or using the similar method for the security processing 
[9] on a GPU.  

 BACKGROUND OF THE STUDY 
DPM splits an original file into several chunks. The 

method uses a pattern to split original file into multiple 
files when each file consists of random part of the original 
file. Then, DPM selects a set of bits (chunk) of each split 
file and finally it scrambles the content of each chunks by 
using a chaos system [6]. The DPM saves 72% battery 
power over AES encryption method because DPM can be 
run in O(1) time complexity for each chunks and it 
requires O(n) for n chunks. 

Pseudorandom Permutation (PRP) is the key module 
of many methods, such as encryption and simulations as 
well as DPM. PRP is defined as follows: 

{0,1} ݃݊݅ܽ݉ ݏ݅ ܨ ൈ {0,1}௦ → {0,1} (1) 

  :݂݅ ܴܲܲ ܽ ݏ݅ ܨ

(i) ∀ݓ ܭℎ݁ܭ  ݁ݎ ∈ {0,1}௦, ܨ is a bijection of  

{0,1} → {0,1} 

(2) 

ሺ݅݅ሻ ∀ݓ ܭℎ݁ܭ  ݁ݎ ∈ {0,1}௦  ܨሺݔሻ is an 
efficient algorithm. 

(3) 

ሺ݅݅݅ሻ 

:ܦ Prሺܦி಼ሺ1ሻ = 1ሻ െ Pr ሺܦሺ1ሻ = 1ሻ|
൏ , ሻݏሺߝ ܭ ݁ݎℎ݁ݓ ← {0,1}௦  

(4) 

where  Pr ሺ. ሻ is the probability of raising the input event. 

As discussed in (4), the PRP provides a uniform 
distribution between all generated elements of F. This 
property of PRP passes the important perfect secrecy 

parameter which was introduced on Shannon’s 
theory [12] for encryption functions [2].  

The main function for generating pseudo number is 
defined as follows:  

ାଵܨ = ሺ1ܨߤ െ  ሻ (5)ܨ

where ܲ ∈ {0,1} and ߤ is a parameter of this equation. 
 

In the classic chaos system problem, if ߤ is selected 
between 3.569945  ߤ  4, and with an initial value of 
ܨ = ሾ0,1ሿ ܨ ,  provides a complex chaos model [2]. F 
uses a set ߦ  to provide a non-convergent, non-periodic 
pseudo random numbers [2]: 

ߦ = { ܲ}ୀ
ఠ  (6) 

where ߱ is maximum number of an original content.  

The DPM splits the content of an original content to 
߱  number of chunks. Then, it uses ߦ  to shuffle the 
content of chunks. We employed conflict-remover 
algorithm which is described in [16] to provide a set of 
unique addresses for each chunks based on input 
parameter (ߤሻ and selected pattern by a user. 

 THE PROPOSED METHOD 
The main challenges of DPM are: (i) generating ߦ (a 

set of addresses which is used to permute an original input 
chunk (ii) Applying ߦ to the original chunk in order to 
have permutated data. Both processes need heavy 
computation and we can accelerate DPM by processing 
both on GPU. However, we face several challenges on 
both processes when we implement DPM in parallel. The 
following sub-sections explain these challenges as well 
as a possible solution for each.   

 Generating ࣈ 

The original content which is an input to DPM comes 
from different sources and it depends on the type of 
application where DPM is employed. For instance, 
[7] employed DPM for a database system management 
system where the input is a set of database queries; 
[2] employed DPM for protecting data privacy of JPEG 
files and each chunks is composed of one or multiple 
Minimum Coded Unit (MCU) blocks; and for healthcare 
electronic systems [16] where data privacy plays a key 
role. 

The nature of generating a set of ߦ  is a sequential 
process that stands against data parallelism. We consider  
ࣧ  as a 2D-array for generating PRP addresses in 
parallel that allows us to use each GPU core to generate 
different sets of ߦ. Each GPU core is corresponding to 
partial part of ߦ.  We map the original input (ࣞ) to a 2D-
array (ࣧ) to maximize the usage of GPU cores. Then, 
we apply ߦ  to ࣧ  in the next step. Figure 1 shows an 
example of mapping from the original input (ࣞ) to a 2D-



 
 

array (ࣧ). In this figure, ࣧ = ⋃ ఋܦ
ୀ  where ߜ is the 

maximum number of chunks for the original content/file 
and ߢ is the size of each chunk. ߦ generates ݊ set of ߦs 
for  ݉ chunks. 

Code I shows how each thread get same seed with 
different sequence numbers. RowCell and ColCell 
represent the number of rows and columns of ࣧ, , 
respectively. This configuration provides the best 
performance because each block of threads receives a 
unique initial seed and each block provides a unique set 
of ߦ  [7]. During the initialization (config function) 
ColCell is considered as a parameter of application. 
Let’s RowCell and ColCell be different size of ࣧ. 
In our experiment (see Section 7), we describe different 
configurations for the application in order to implement 
different size of ࣧ. 

Code II shows an implementation of generating of 
RowCell and ColCell of the PRP generator function 
in the main() function. In this code, Line 1 allocates space 
for results on host.  Space allocation for results on device 
is defined in Line 2-4. The ߦ set is configured in Line 4 
and PRP generator is called in Line 6. 

 Apply ߦ to ࣧ 

When random addresses have been generated in 
previous section and it is stored in ߦ , then different 
solutions are available for applying ߦ to ࣧ as follows: 

 The first option is transferring ߦ  to the host-
memory and shuffle ࣧ on host-memory: This process 
needs ܱሺ݊ሻ where ݊ is the length of ߦ. However, the 

computation on shuffling process of data on host-
memory cannot be implemented in parallel on device.   

 The second option, is transferring ࣧ to device 
memory, and shuffle ࣧ based on ߦon device memory. 
Although this process still needs ܱሺ݊ሻ  computation 
time where ݊ is the length of ߦ. This process can be 
implemented in parallel on device that accelerate 
shuffling process of data. 

Let’s consider the second option for the 
implementation of applying ߦ to ࣧ . In this case, there 
are two elements of ࣧ that needs to be exchanged when 
the PRP shows that an exchange is required between two 
 bits, ࣧwhere it is the original address and ࣧ where-ߢ
it is the destination address for the exchange. If we 
consider each element of  ࣧ  as a ߢ  bit element, then 

minimum memory requirement for the implementation is 
 When DPM needs to exchange the content of two bits .ߢ
of ࣧ  ( ࣧ  and ࣧ ) based on ߦ , one of the following 
possibilities can raise: ሺ݅ሻ ࣧ = ࣧ : In this case, if we 
assume that ߢ = 1 then no exchange is required because 
the content of both bits are the same and we can save the 
computation overhead of exchanging the content. If  ߢ 
1 then the ߢ-bits of the content from ࣧ should be equal 

1: hostResults = (unsigned int *)calloc(RowCell * ColCell, sizeof(int)); 

2: cudaMalloc((void **)&devResults, RowCell * ColCell *sizeof(unsigned int)); 

3: cudaMemset(devResults, 0, RowCell * ColCell *sizeof(unsigned int)); 

4: cudaMalloc((void **)&devStates, RowCell * ColCell * sizeof(curandState)); 

5: config << <RowCell, ColCell >> >(devStates); 

6: DPM_PRP << <RowCell , ColCell >> >(devStates, Count, devResults); 

Code II. Main function for Calling the PRP generator 

// two parameters of the size of Sai (M: 
RowCell * ColCell)  
const int RowCell = 128; 
const int ColCell = 128; 
__global__ void config(curandState *state) 
{ 
  int id = threadIdx.x + blockIdx.x * ColCell; 
  curand_init(1234, id, 0, &state[id]); 
} 

Code I. The config function for initialization of a thread 
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  Figure 1. An example of mapping and exchanging process memory 
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to all ߢ -bits of ࣧ.  ሺ݅݅ሻ ࣧ ് ࣧ  : The exchange is 
required. In this case ࣧ

ᇱ and ࣧ′ are the final value of 
the exchange process on ࣧ  and ࣧ  after exchange 
process, respectively. Table I. summarizes these two 
different conditions. 

Table I. The summarize of exchange process  

ࣧ ࣧ ࣧ′ ࣧ′ Exchange 
is 

required 
0 0 0 0 N 
0 1 1 0 Y 
1 0 0 1 Y 
1 1 1 1 N 

 

 We also optimize the implementation of shuffling 
process of the two different condition. The following 

rules are used in order to avoid additional host memory 
exchange computation:  

ࣧ
ᇱ = ൫ ࣧ⨁ ࣧ൯⨁ ࣧ 

= ሺ ࣧ⨁ ࣧሻ⨁ ࣧ 

= 0 ⨁ ࣧ 

 

 

(7) 

ࣧ
ᇱ = ൫ ࣧ⨁ ࣧ൯⨁ ࣧ 

= ൫ ࣧ⨁ ࣧ൯⨁ ࣧ 

= 0 ⨁ ࣧ 

 

 

(8) 

 Therefore, by using Equation 7 and 8, we do not need 
to run the exchange function in order to optimize the 
exchange function. 

 EVALUATION OF PROPOSED METHOD 

 Experimental setup 

We implemented the proposed method on a PC with CPU 
i7-4790, x64 based processor, device memory of 12 GB 
and a GeForce GT 720 GPU with 1,001,000 memory 
clock rate (kHz), 64 bits Memory Bus, 16.016000 GB/s 
Peak Memory Bandwidth (GB/s), and 16GB memory. 
We used NVIDIA GPU Computing Toolkit v7.0 and we 
profiled (logging of NVIDIA functions) the executions of 
the proposed method with NVIDIA profile v7.0.   

In order to record each step of execution, we used 
NVIDIA profiler in the implementation code where it 
requires to be started or stopped by the following code: 

// start profiling of part of code 
cudaProfilerStart(); 

// stop profiling of part of code 
cudaProfilerStop(); 

By default, the first call of CUDA API starts the profiler 
(in this case cudaGetDevice initializes the profiler). An 
example of output of the profiler is shown in the List 1. 
In this example, the profiler shows that 10384 API calls 
(CUDA API) where 98.27% of time is taken in execution 
of cudaMemcpy which includes the following functions:  

 cudaMemcpyHostToHost,  
 cudaMemcpyHostToDevice, 
 cudaMemcpyDeviceToHost, or 

cudaMemcpyDeviceToDevice.  

 Experimental Results 

First, we consider the generator of ߦ  sets, and the  
distribution values for each set over different iterations. 

 
2.a. The result of a set of ߦ 

 

 
2.b. The result of six sets of ߦ with different initial 

values 
Figure 2. The evaluation results 
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==10384== NVPROF is profiling process 10384, command: calltester 
==10384== Profiling application: calltester 
==10384== Profiling result: 
==10384== API calls: 
Time(%)      Time            Calls       Avg.             Min.             Max.        Name 
 98.27%        7.18901s          3           2.39s        1.39s            4.12s     cudaMemcpy 
  1.54%      112.41ms           2         56.20ms    435.92us    111.97ms    cudaMalloc 
  0.18%        13.240ms     385        34.38us        2.85us       11.74ms    cudaLaunch 
  0.00%      313.33us          83          3.77us              0ns                   147.11us    cuDeviceGetAttribute 

List 1. The result of “nvprof calltester” 



 
 

These analysis allows us to evaluate the security of the 
method when the values have been generated with 
different GPU-cores. If there is a conflict between values 
of different sets, then it shows security issue in the 
proposed method. In the future, we plan to evaluate the 
generator with other statistical models, such as chi-square 
test of independence [17].  

Figure 2.a shows a set of ߦ and Figure 2.b shows six 
sets of ߦ  with different initial values. In these figures, 
each point represents a value of ߦ, X-axis represents the 
iteration number and Y-axis represents the value of PRP 
function. These figures illustrate the proposed method 
generates different sets of ߦ  when each one does not 
introduce any conflict to other values of other ߦ  sets. 
Figure 3 shows the distribution variances of ߦ where each 
set of ߦ values is illustrated in Figure 2. As shown in this 
figure, the values of each set is uniformly distributed 
through the range of ߦ  values. As clearly shown in 
Figure 2.b and 3.b there is not any spot pattern or a cluster 
pattern that helps an attacker to estimate values by 
knowing values (partial values) of one or different ߦ sets.   

Overlap of different values from different sets of ߦ is 
one of the security challenge for the proposed method. 
Each ߦ  provides a permutation model. An overlap 
between different value of ߦ sets, allows an attacker to 
understand a permutation model by knowing one or 
multiple permutation models. Another challenge is 
finding a pattern between different subsets of ߦ . As 
shown in Figure 3, different curves do not show similar 
patterns in any curves even for one set of ߦ.  

Second, we considered the performance of the 
proposed method by profiling the behavior of DPM for: 
(i) generating different sets of ߦ on different size of a 2D-
array; and (ii) permutation process. As shown in Figure 4 
and 5, we assessed the performance of generating ߦ 
values with the following sizes: 32*64, 64*64, 64*128, 
128*128. X-axis represents the size of input. Y-axis in 
Figures 4.a illustrates the number of calls. Y-axis in 
Figures 4.b-d represent the computation time 

(milliseconds). Figure 5 shows the behavior of 
CudaMemcpy where it is responsible for transferring data 
from CPU to GPU. As shown in this evaluation, the blue 
curve indicates that it is increased linearly. As a result, the 
proposed method is capable to increase the size of input 
data with minimal transferring cost between CPU and 
GPU.  

The evaluation results show that the 2D-array with the 
size of 128*128 provides better performance over other 
input sizes. However, the energy consumption is another 
parameter that can be assessed [18] in order to provide an 
overall result for this performance evaluation. This 
evaluation also provides an overall view of the 
performance of the proposed method.  

 SECURITY ANALYSIS 
In this section, we describe the security assumption 

and the level of security for the proposed method. 

Let ܵܥሺࣧሻ be the scramble function of DPM on n-
core GPU. Perfect secrecy as described in Shannon 
theory [12] is the probability of two different encrypted 
messages and in our study, ܵܥሺ ࣧሻ and ܵܥ൫ ࣧ൯, which 
is defined as follows:  

∀݉, ݉ଵ ∈ |݉| ܯ = |݉ଵ| ܽ݊݀ ܿ ∈  (9)                      ܥ

ሺPrሾܵܥሺߦ , ݉ሻ = ܿሿሻ = ሺPrൣܵܥ൫ߦ , ݉ଵ൯ = ܿ൧ሻ       (10) 

where ߦ and ߦ are defined as different sets of PRP with 
different initial values, ߤ  and ܲ  is defined in 
Equation 5. ܯ  is a set of all original messages and ܥ 
consists of permutated messages based on a set of ߦ 
values.  
Lemma 1: DPM has perfect secrecy. 
To proof Lemma 1, we must proof the following sub-
lemmas, Lemma 1.1 and Lemma 1.2  as follows: 

Lemma 1.1: By a given c (scrambled data), the adversary 
cannot learn about ݉  and ݉  (two different original 
messages). Therefore, we must generate different outputs 
for all different inputs. 

      

3.a. A set of 3       ߦ.b. Six sets of ߦ 
Figure 3. Uniform distributions of ߦ 
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Proof: Each separate original content in DPM should 
be scrambled with different sets of ߦ to avoid similarity 
between ܵܥሺߦ, ݉ሻ and ܵܥ൫ߦ, ݉൯. Each set of ߦ is 
generated by ℂGPU-core independently. Each core 
uses different initial values to generates different ߦ sets 
without any conflict with other ߦ sets, or with minimal 
partial conflict to other sets.  

݈݁݅ܨ∀ , ,ߞሺܥሾܵݎܲ :ܿ ሻݐ݊݁ݐ݊ܥ = ܿሿ

=
ߞ# ∈ Ζ such that SCሺߞ, ሻݐ݊݁ݐ݊ܥ = ܿ

|Ζ|
  

Since the intitalization value of each  ߦ is different for 
each GPU-core (the security assumption), then an 
attacker by accessing to the scrambled content is not able 
to learn about ݉ and ݉ , if and only if the attacker 
cannot learn about sequence of ߦ values which means the 
attacker should not have knowledge of parameters of ߦ 
generator. As our evaluation of generated PRP shows in 
Figure 2 and 3, then the attacker is not able to learn about 
݉ and ݉ by accessing to ܿ. ∎   
Lemma 1.2:  The ߦ generator has perfect secrecy for all 
GPU cores. 
Proof: The PRP must provide a uniform distribution for 
all entries of n bits as follows: 

ܲ: ܷ → ሾ0,1ሿ  ܿݑݏℎ ݐℎܽݐ   ܲሺݔሻ = 1
௫∈

 

where ܷ = {0,1}.  

ݔ ∀ ∈ ܷ: ܲሺݔሻ =
1

|ܷ|
  

 

 

 

 
4.a  4.b 

 

 

 
4.c  4.d 

Figure 4. Evaluation Results for different size of ߦ 
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Figure 5. Performance of CudaMemcpy  
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Since each GPU-core generates an unique set of ߦ 
values, then the probility of all ߦ sets are equal and  

ܲሺݔሻ =
ଵ

||
 for each GPU-cores satisfied the generator 

condition of perfect secrecy. ∎ 

 CONCLUSION AND FUTURE WORK 
 Cloud computing offers new oportutanties to users to 
efficiently outsource data and applications. Data privacy 
is one of the major issues in cloud computing systems. In 
our previous study, we introduced a light-weight data 
privacy method (DPM) that allows users to prototect their 
data before submitting original file to the cloud. Graphic 
Process Units (GPU) allows parallel processes to be run 
efficiently. GPU kernel is able to process 
computationally intensive tasks on client side by using a 
GPU platform, such as NVIDIA CUDA Toolkit.  

In this paper, we introduced a solution to mobile cloud 
users to accelerate DPM on multicore GPUs. This study 
shows that DPM can be implemented securly and 
efficiently on multiple independent GPU-cores. The 
proposed method protects users data privacy by 
processing independent pesudo-random number 
generator on each core when it is complying with perfect 
secrecy requirements. We evaluated the proposed method 
by performing rigorous assessments on performance and 
the security. On performance side, we ran different 
number of parallel processes in order to assess the 
computation time on each input size. We implemented 
the proposed method when it is being parallelized on a 
2D-array of parallel processes where each thread block 
assigned by different initial values to generate different 
and unique pesudo-random numbers. The generated 
numbered are used for permutation of an original file. On 
security side, we considered the security assumption of 
the method and we assessed the result of pseudo-random 
numbers, distribution of this random numbers and perfect 
security assessments to analysis the security of the 
proposed method on multiple GPU cores. 

We plan to asses the performance of the proposed 
method with different platforms that can be implemented 
on different GPU architectures. For instance, we will 
implement the proposed method by using OpenMP that 
help us to evaluate and to compare the current 
performance against other GPU architcetures/platforms. 
We will also invastigate the energy consumption [18] of 
the method on different GPU platforms and architectures. 
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