
Scheduling Jobs with Non-uniform Demands on
Multiple Servers without Interruption

Sungjin Im, Mina Naghshnejad and Mukesh Singhal
Electrical Engineering and Computer Engineering, University of California, Merced, CA 95343

Email: {sim3, mnaghshnejad, msinghal}@ucmerced.edu

Abstract—We consider the problem of scheduling jobs with
varying demands on multiple servers. Each server has a certain
computing capacity and can schedule multiple jobs simultane-
ously as long as the jobs’ total demand does not exceed the
server’s capacity. This scenario arises commonly in virtualization,
cloud computing, and MapReduce (or Hadoop). We study this
problem with the requirement that jobs must be scheduled
non-preemptively, meaning that every job must be completed
without interruption once it gets started. Often, preemption is
out of choice since preempting a job can be prohibitively costly
or is not allowed due to system constraints. We focus on the
popular objective of minimizing total completion time of jobs.
This problem is NP hard hence we study heuristics with provable
approximation guarantees. Succinctly, the interaction between
two orthogonal quantities, jobs demands and sizes makes the
scheduling decision significantly more challenging.

In this paper we propose novel algorithms for scheduling jobs
with non-uniform demands on multiple homogeneous servers
without preemption. We first observe that the Smallest Volume
First (SVF) algorithm that favors jobs with smaller volumes could
perform very poorly in general. However, we show that SVF
yields a nearly optimal schedule when the system is overloaded
and jobs have demands considerably smaller than servers’
capacities. This result supports the intuition that SVF should
work well unless some jobs with high demands occupy the servers
for long, blocking other jobs. Building on this intuition and using
reduction to geometric packing problems, we develop algorithms
that are constant approximation for all instances for the first
time. Prior to our work, there was no theoretical study on this
problem even for the single server case.

I. INTRODUCTION

Modern data centers consist of a large number of servers
to handle explosive growth of data. Further, each server
is getting increasingly powerful with more resources. For
example, multi-processor chips have become dominant as the
uniprocessor chip design has hit the thermal wall by producing
too much heat to be cooled down economically. It is widely
expected that more processors be packed into a single chip in
the future as pointed out in the following quote.

“With multi-core its like we are throwing this Hail
Mary pass down the field and now we have to run
down there as fast as we can to see if we can catch
it.” – David Patterson

As servers are getting more powerful, each server is often
set to process multiple jobs simultaneously to exploit its
resources to the full capacity. This trend is observed in various
forms. Virtualization technologies such as VMware products
and Xen allow each individual physical server/machine to

be shared by multiple virtual machines. Virtualization helps
reduce the cost of maintenance, operation and provision [1],
[2], and hence has been adopted in many places. Cloud
computing platforms such as Amazon EC2 [3] and Microsoft
Azure [4] aim at providing ubiquitous access to shared re-
sources where resources are shared by multiple jobs and
clients. In MapReduce [5] (or its open source implementation,
Hadoop), which is now the de facto large data processing
framework, typically several tasks are processed on the same
server simultaneously. See [6]–[8] for characterizations of such
tasks in Google clusters.

All the above settings can be naturally modelled as follows.
Each job j has a certain computing requirement, dj , which we
call j’s demand, and can be processed on a server/machine
with other jobs if the total demand of the jobs does not
exceed the machine’s computing capacity. This model was
introduced in [9]. One important assumption made in [9] was
that jobs can be preempted with no penalties and no delay.
However, significant overhead could occur when preempting
jobs being processed to schedule other jobs. Preemption
can be very costly due to context switching overheads, or
may not be allowed due to system restrictions or contracts
with clients. Unfortunately, non-preemption makes scheduling
decisions significantly more challenging, and previous work
has been focused on preemptive scheduling except for some
special cases. In reality only a subset of jobs may have to
be processed non-preemptively. However, in this paper we
focus on developing algorithms that schedule all jobs non-
preemptively. The more general setting where preemption is
not allowed or limited for a subset of jobs will be studied in
future work.

In this paper we study non-preemptive scheduling algo-
rithms in the presence of multiple identical machines where
multiple jobs can be scheduled simultaneously subject to the
capacity constraints of individual machines. While there are
various scheduling objectives considered in practice and in
the literature, we consider the popular objective of minimiz-
ing the total completion time of jobs. We assume that all
jobs are available to schedule from the beginning and all
jobs information is known in order to focus on the offline
scheduling environment where jobs have varying demands.
This problem is NP-hard, and we aim at developing heuristics
with approximation guarantees. An algorithm is said to be a
c-approximation if its objective is at most c times the optimal
scheduler’s objective for all instances. We note that the non-

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

preemptive requirement makes the problem challenging as in
preemptive case we can easily get a constant approximation
using linear programming. To our best knowledge, there has
been no theoretical study of this problem despite its wide
appearance in practice.

A. Formal Problem Definition

There are N jobs, 1, 2, 3, ..., N that are to be scheduled on
M servers/machines, which are indexed by 1, 2, 3, ...,M . Each
job j has processing time/size pj and demand dj . It is assumed
w.l.o.g. that pj ≥ 1. We call the quantity vj := pjdj as j’s
volume. We will be interested in non-preemptive scheduling,
meaning that a job must be processed without interruption until
completion once it gets started. Each job must be assigned
to a machine. A feasible schedule can be described by σ =
{(Sσj ,mσ

j)}j∈[N] where Sσj is j’s start time and mσ
j is the

machine to which j is assigned. When the schedule σ is clear
from the context, we may drop σ from the superscript and
simply use Sj and mj . Note that each job j’s completion
time Cj = Sj + pj is determined by its start time in the non-
preemptive setting. We say that a schedule σ is feasible if the
total demand of jobs processed on each machine is at most the
machine’s capacity at all times, i.e.

∑
j:t∈(Sj ,Sj+pj),mj=i

dj ≤
Di for all machines i and times t. Here Di denotes machine i’s
capacity. Assuming that all machines are identical, by simple
scaling, we can assume w.l.o.g. that Di = 1 for all machines
i and 0 < dj ≤ 1 for all jobs j. The goal is to find a feasible
schedule that minimizes total completion time of all jobs, i.e.∑
j∈[N] Cj .

B. Our Results

1) Priority-based Algorithms and Extensions to Multiple
Machines: Priority-based algorithms refer to those that pri-
oritize jobs based on fixed quantities. Such algorithms are
desirable in practice in that priorities remain the same between
jobs and are easy to implement. In the following priority-based
algorithms, jobs are ordered in non-decreasing order of the
following respective quantities.
• Shortest Job First (SJF): size pj .
• Smallest Demand First (SDF): demand dj .
• Smallest Volume First (SVF): volume djpj .
In the standard/uncapacitated scheduling setting where a

machine can schedule at most one job at a time, a complete
ordering of jobs decides the entire schedule for the case of
single machine, i.e, M = 1: the highest-priority unschedulued
job is started at the earliest time when the machine becomes
available. We can naturally extend priority-based algorithms to
the capacitated setting where a machine can process multiple
jobs simultaneously by starting the highest-priority unsched-
uled job j at the earliest time t when the job gets enough
resources for pj time steps so that it can be processed until
its completion without interruption.

Each priority-based algorithm can be coupled with a ma-
chine assignment rule which decides the machine each job is
scheduled on. In this work, we will consider three machine
assignment rules.

• Earliest Feasible Machine (EF): Each job is assigned
to the earliest feasible machine.

• Lowest Workload First (LW): Each job is assigned to
the machine with the lowest workload.

• Random (RANDOM): Each job is assigned to a random
machine.

We will refer to each combination as the pair of the two
algorithms’ names. For example, SVF-EF is SVF coupled with
EF. We begin by showing that simple priority-based algorithms
can have very poor performance for some instances.

Theorem 1. [Appendix A] For any constant c > 1, none of the
algorithms SVF, SJF, SDF is a c-approximation for minimizing
total completion time. Further, this is the case even when there
is only a single machine.

The lower bound instances that fail the priority-based al-
gorithms are simple but give a useful insight on the problem.
Let’s first discuss SJF. It is folklore that SJF is optimal when
all jobs have a unit demand [10]. A drawback of SJF is that
it could schedule slightly shorter jobs with large demands
pushing back other jobs with tiny demands. The algorithm
SDF can perform poorly for similar reasons. It vmay een
schedule jobs in decreasing order of their sizes even when
jobs have similar demands. Hence prioritizing jobs based on
either their sizes or demands can lead to schedules of very
poor qualities.

On the other hand, it is not very obvious at first sight why
SVF is bad since it looks like a natural generalization of SJF to
the capacitated setting. Our lower bound instance shows that
the bad event can occur when some jobs with demands close to
1 block machines for long thus delaying all jobs with very tiny
demands. However, in practice not many jobs have demands
very close to machines capacities, and it is imaginable that
SVF could perform well for most instances. We formalize this
intuition in the following theorem.

Theorem 2. [Section II] For a constant 0 < α < 1, if all
jobs have demands at most α, then SVF-EF is a

(
3α
1−α + 3

)
-

approximation. More precisely, SVF-EF’s total completion
time is at most 1

1−α times the optimum plus 2
1−α times the

total size of all jobs.

When the system is overloaded, the contribution of jobs
sizes to the total completion time objective becomes negligible.
Hence, Theorem 2 implies that SVF-EF’s objective becomes
arbitrarily close to the optimum as α tends to 0 and the
system gets more overloaded. We note that SVF was analyzed
only together with EF since it does not seem to yield similar
approximation guarantees when coupled with other machine
assignment rules.

2) Constant Approximations: Finally, building on the intu-
ition, along with the above results, we develop algorithms that
are constant approximations for all instances for the first time.

Theorem 3. [Section III] For any constant ε > 0, there is a
12(1 + ε)-approximation when M = 1. When there are more
than one machine, there is a 5 +O(1/M)-approximation.

When there are multiple machines (M ≥ 2), we combine
SJF and SVF. Let us call jobs with demands higher than 1/2
as high-demand jobs, and others as low-demand jobs. It is
easy to see that no two high-demand jobs can be processed
on the machine at the same time. Intuitively, scheduling high-
demand jobs in the capacitated setting is similar to scheduling
jobs in the non-capacitated setting. Hence we dedicate some
machines to processing high-demand jobs separately, and
process low-demand jobs on the remaining machines. Thus,
by separating high-demand jobs from low-demand jobs, we
achieve a constant approximation.

However, when there is only one machine (M = 1), we
need a different idea. In this case, we reduce the problem to
the geometric packing problem where the goal is to maximize
the total profit of rectangles packed that can be packed into
a target rectangle [11]. Using this reduction and borrowing
ideas from [12], for any time t, we can obtain a partial
schedule that completes as many jobs by time 3(1 + ε)t as
the optimal scheduler does by time t. Then, we derive a
complete schedule by concatenating the partial schedules for
geometrically increasing t. We note that it is possible to reduce
this problem to the maximum throughput scheduling problems
[13], [14]. However, the resulting approximation ratio is worse,
hence we use the above reduction.

As discussed earlier, any reasonably good algorithms seem
to have to take into account both quantities, jobs sizes and
demands. Then, a natural question is if we really need a
delicate 2D-packing to obtain constant approximations. Quite
surprisingly, we show that this is not the case. In particular,
we show one can achieve a constant approximation in a
nearly linear time. While the approximation guarantee is worse
than the previous algorithms, we include this result since it
shows the possibility of existence of more efficient algorithms
with approximation guarantees comparable to those claimed
in Theorem 3. Due to the space of constraints, the proof of
the following theorem is deferred to the full version of this
paper.

Theorem 4. [Section IV] There is a constant approximation
where all jobs processed at the same time have an equal
size within a factor of 2. Further, the algorithm runs in
O(N logN) time.

This algorithm is based on reduction to bin packing. The key
idea is to group jobs of similar sizes so that each ‘consolidated’
job has a sufficiently large demand. Then, we schedule the
consolidated blocks mimicking the algorithm Highest Den-
sity First (HDF). The algorithm HDF is a generalization of
SJF to the case where jobs have weights, and is known to
be constant-approximate in the non-capacitated setting. The
actual algorithm needs minor modifications, but this is a high-
level description of our algorithm and the intuition. While the
high-level idea is intuitive, the analysis is non-trivial.

3) Experiment Results: We conduct experiments via sim-
ulation on both synthetic and real world data sets to support
our theoretical findings (Section V). We implemented priority-
based algorithms combined with three different machine as-

signment rules as explained in the beginning of this section.
Experiments show that SVF outperforms all other priority-
based algorithms when combined with the EF assignment rule
that assigns the highest-priority unscheduled job to the earliest
available machine. Initial experiments show that grouping jobs
of similar size beats SVF-EF when the number of jobs in the
workload are large enough. However, we present the complete
details of experiments as well as analysis in the full version of
the paper. We believe our work is of fundamental importance
since it not only develops the first constant approximations for
the non-preemptive capacitated scheduling problem commonly
arising in many scheduling environments, but also provides in-
depth insights on the problem. Further, we view the natural
greedy algorithm SVF through the lens of approximations, and
give an explanation on why SVF distinguishes itself among
other algorithms.

C. Related Work

Due to the space constraints, we only discuss the most
related work. When each job has a release time and deadline,
and the goal is to maximize the total weight of jobs completed
before their deadline, several approximations are known [13],
[14]. If the objective is minimizing the makespan, we can
easily adapt our algorithms and analysis to obtain constant
approximations (Section III).

As mentioned, [9] studied our problem in the preemptive
setting, and proposed and analyzed several online algorithms
for the total flow time objective under the resource augmenta-
tion model; a job j’s flow time is defined as the job’s comple-
tion time minus its arrival time. In contrast, our work studies
non-preemptive scheduling. In the non-preemptive setting, the
flow time objective becomes very difficult to approximate
[15]. Hence, we consider the completion time objective which
admits more positive results. For works in the queueing setting
where jobs arrive following certain distributions, see [16], [17].
In such models, typically the focus is on the stability of the
system, which is very different from our paper.

A lot of work was done in somewhat related paralleliza-
tion models. For example, see [18]–[22]. Roughly speaking,
in these works, one can schedule a job on multiple ma-
chines/processors simultaneously to speed up the processing.
While these models accurately capture how jobs are paral-
lelized at a high level, they do not enforce hard constraints on
jobs demands. On the other hand, in our model, a job cannot
be processed when given less resources than it demands.

II. ANALYSIS OF SMALLEST VOLUME FIRST FOR JOBS
WITH SMALL DEMANDS

In this section we prove Theorem 2. Since SVF will be
paired only with EF, we may refer to SVF-EF simply as SVF.
Similarly, another algorithm SJF, which is considered for the
sake of analysis, will be paired with EF, and we refer to SJF-
EF simply as SJF. It is well known that SJF is optimal in the
non-capacitated case. We first show that the optimal schedule
can only be better off if it can compress jobs: replace each
job j with a job j′ with demand 1 and size pjdj preserving

the volume of the job. Let I be the original instance and I ′

the compressed instance. For notational convenience, for an
instance I ′′, we allow OPT(I ′′) to denote a fixed optimal
schedule for instance I ′′ or its objective depending on the
context.

Lemma 1. OPT(I ′) ≤ OPT(I).

Proof: Consider a fixed machine m. Let j1, j2, ..., jk be
the jobs assigned to the machine m, which are ordered in their
completion times in schedule OPT(I). Let j′1, j

′
2, ..., j

′
k be the

compressed jobs corresponding to j1, j2, ..., jk. We process
jobs j′1, j

′
2, ..., j

′
k in this order on the same machine. It is easy

to see that we can complete each job j′κ before jκ completes
in OPT(I). This is because no schedule can complete all
jobs j1, j2, ..., jκ before time

∑κ
h=1 phdh which is the total

volume of jobs j1, ..., jκ, and compression preserves each job’s
volume. This completes the proof.

Further, we know that SJF is optimal for the instance I ′

since I ′ is an instance in the non-capacitated setting [23].
Hence we can assume w.l.o.g. that the optimal schedule
OPT(I ′) for I ′ is generated by SJF. Let Sj and Cj denote
job j’s start and completion times in the former schedule,
respectively. Define S∗j and C∗j analogously for the latter
schedule OPT(I ′). The reader may wonder if compression
gives too much power to the optimal scheduler. For example,
it may finish a long job with a tiny demand very quickly by
compressing it. Then, C∗j −S∗j could be much smaller than pj .
Hence we will bound Cj by S∗j and pj in Theorem 2. We now
show that SVF utilizes resources pretty well in the following
sense.

Lemma 2. Suppose SVF starts processing job j at time Sj .
Then it must be the case that each machine’s capacity is used
by at least 1− α from time 0 to Sj .

Proof: To prove the lemma we show the following
invariant. Fix a machine m. For notational convenience, let
1, 2, ..., N be the order of jobs considered by SVF. Let Dj,t

denote the total demand of jobs amongst 1, 2, 3, ..., j that are
processed at time t on machine m. We claim that for any
fixed j, max{Dj,t, 1 − α} is non-increasing in time t. We
prove this by induction on j. The claim trivially holds when
j = 1. Assume that the claim is true for j − 1. Note that
Dj−1,t > 1− α for all 0 ≤ t < Sj . Otherwise, knowing that
Dj−1,t is non-increasing in t, we could have started processing
job j earlier than time Sj . If job j gets processed on machine
m, we have Dj,t = Dj−1,t + dj for all Sj < t < Sj + pj .
Since Dj,t > 1−α for 0 ≤ t < Sj , Dj−1,t ≤ 1−α for t > Sj ,
and Dj−1,t is non-increasing in t for times greater than Sj ,
the claim also holds true for job j. If job j gets processed on
other machines, we have Dj,t = Dj−1,t, which immediately
implies the claim for job j due to the induction hypothesis.

Next, we compare each job’s start time in both schedules,
those by SVF for I and by SJF for I ′. We first upper bound
each job’s start time in SVF’s schedule.

Lemma 3. For all jobs j, we have Sj ≤ 1
(1−α)M

∑j−1
h=1 vh.

Proof: By Lemma 2, we know that SVF processed at
least (1 − α) volume of work for jobs 1, 2, ..., j − 1 by time
Sj . Hence, we have

∑j−1
h=1 vh ≥ (1− α)MSj .

Lemma 4. For all jobs j, we have S∗j ≥ 1
M

∑j−1−(M−1)
h=1 vh.

Proof: In SJF’s schedule, at most M − 1 jobs are being
processed when job j starts getting processed. Hence SJF must
complete at least j−1− (M −1) jobs out of 1, 2, ..., j−1 by
time S∗j . Thus, SJF processes at least

∑j−1−(M−1)
h=1 vh volume

of work by time S∗j , which yields the lemma.
We are now ready to complete the proof of Theorem 2. For

each job j we derive,

Cj ≤ pj +
1

(1− α)M

j−1∑
h=1

vh [By Lemma 3]

= pj +
1

(1− α)M

(j−1−(M−1)∑
h=1

vh +

j−1∑
h=j−M+1

vh

)

≤ pj +
1

(1− α)M

(j−1−(M−1)∑
h=1

vh +

j−1∑
h=j−M+1

vj

)
≤ pj +

1

1− α
· S∗j +

M − 1

M(1− α)
vj [By Lemma 4]

≤ 1

1− α
· S∗j +

2

1− α
· pj

The last inequality follows since job j has demand at most
α, meaning vj ≤ αpj . Knowing that

∑
j S
∗
j and

∑
j pj is

at most equal to the optimal total completion time, we have
Theorem 2.

III. CONSTANT APPROXIMATIONS FOR ALL INSTANCES

In the previous section we showed that SVF is a constant
approximation if all jobs have demands at most α that is a con-
stant smaller than 1. In this section, we develop algorithms that
are O(1)-approximate for all instances, proving Theorem 3.
We consider two cases depending on whether M ≥ 2 or not.

A. Single Machine Case (M = 1)

In this case, we reduce our problem to the 2D-strip packing
problem. Using this reduction, we will show the following.

Lemma 5. Suppose there is a subset of n jobs that can be
completed within L time steps. Then, for any constant ε > 0,
one can find a schedule in polynomial time that completes at
least n jobs by time 3(1 + ε)L.

What this lemma means is that we can complete as many
jobs as the optimal scheduler if we are allowed to use 3(1+ε)
factor more time steps. Before proving the lemma, We first
discuss how we use it to prove Theorem 3 in the single
machine case. By repeatedly using this lemma, we obtain
partial schedules and concatenate them to get a final schedule.
Let N` denote the total number of jobs that the optimal
schedule completes by time 2`. Using Lemma 5, we find
a set of at least N` jobs that can be scheduled by time

3(1 + ε)2` – let this schedule be denoted by B`, which
we call a block. We concatenate the blocks B0, B1, B2, ...
in this order. If a job in B` was already scheduled in the
previous block, we simply remove the job from the block B`.
The resulting schedule is clearly feasible. Note that jobs in
block B` are processed between times 3(1 + ε)

∑`−1
h=0 2h and

3(1 + ε)
∑`
h=0 2h = 3(1 + ε) · (2`+1 − 1). For notational

simplicity, let N−1 := 0. In this schedule, the total completion
time is at most

3(1 + ε)
∑
`≥0

2`(N −N`−1) (1)

This is because when the block B` is scheduled, there are
at most N −N`−1 jobs alive, and the block is scheduled for
3(1 + ε)2` time steps. On the other hand, the optimal total
completion time is at least

N +
∑
`≥1

2`−1(N −N`), (2)

since the optimal schedule has at least N − N` jobs alive
during the time interval (2`−1, 2`) for ` ≥ 1. The first term N
follows since no job completes before time 1; recall that all
jobs have sizes at least 1. A simple algebra gives Theorem 3
for the case M = 1.

It now remains to prove Lemma 5.

Proof of Lemma 5: We borrow ideas from [11] which studies
the problem of maximizing the total profit of rectangles that
can be packed into a target rectangle without overlap; here
rectangles can only be moved vertically and horizontally, and
rotations are not allowed. We first find a set of jobs J whose
total volume does not exceed (1 + ε)L. This is essentially a
special case of Knapsack problem where we are asked to pack
items of different profits and sizes into a knapsack with the
goal of maximizing the total profit of items packed. Then, it
is well known that we can pack in polynomial time as many
items into a knapsack of size (1 + ε)L as the optimal solution
can pack into a knapsack of size L; for example see [24].

We now view the scheduling instance as an input to the 2D-
strip packing problem. In the 2D-strip packing problem, we
are asked to pack all given rectangles without rotations into
a strip with bounded width but with unbounded height, and
the goal is to minimize the strip height. Towards this end, for
each job j, create a rectangle r(j) with width pj and height dj .
Steinberg [12] shows a sufficient condition that all rectangles
can be packed – particularly, the condition is satisfied if the
strip height is at least twice the maximum height of rectangles,
and the total area of rectangles is at most half of the strip area
(and with other ‘easy conditions’). Hence we can pack all
rectangles corresponding to J into a strip with width (1 + ε)L
and height 2. Following ideas in Section 3 of [11], we can
pack all the rectangles corresponding to J into three strips with
width (1 + ε)L and height 1. We obtain the desired schedule
by concatenating these three strips horizontally and translating
it into a schedule. �

B. Multiple Machines Case (M ≥ 2)

We schedule jobs of demands more than 1/2 (high-demand
jobs) and the other jobs (low-demand jobs) separately on two
disjoint sets of machines, M1 and M2, respectively. Our
algorithm, which we call HYBRID, combines two algorithms,
SJF and SVF. We use SJF to schedule high-demand jobs on
M1 pretending that high-demand jobs have demands equal to
1. For low-demand jobs, we schedule them onM2 using SVF.
As in Section II, we use Sj and Cj to denote job j’s starting
and completions times in the schedule of our algorithm.

1) Low-demand Jobs: We first upper bound low-demand
jobs’ contribution to the objective. Obviously, the optimal
scheduler can only decrease its objective if it only needs to
complete low-demand jobs. Hence we can assume w.l.o.g. that
we only have low-demand jobs. The analysis is very similar
to that in the previous section. The only difference is that SVF
can only use M2 machines while the optimal scheduler can
use all M machines. As before, let S∗j and C∗j denote the start
and completion times of a low-demand job j in the optimal
schedule respectively, assuming that all jobs are compressed.
Then, we can easily adapt Lemmas 3 and 4 as follows.

Lemma 6. For all low-demand jobs j, we have
• Sj ≤ 2

M2

∑j−1
h=1 vh.

• For all jobs j, we have S∗j ≥ 1
M

∑j−1−(M−1)
h=1 vh.

Lemma 7. For all low demand jobs j, we have
Cj ≤ 2M

M2
· S∗j +

(
M−1
M2

+ 1
)
· pj

Proof:

Cj ≤ pj +
2

M2

j−1∑
h=1

vh [Lemma 6]

= pj +
2

M2

j−1−(m−1)∑
h=1

vh +

j−1∑
h=j−m+1

vh

≤ pj +

2

M2

j−1−(m−1)∑
h=1

vh +

j−1∑
h=j−m+1

vj

≤ pj +

2M

M2
· S∗j +

2(M − 1)

M2
vj [Lemma 6]

≤ pj +
2M

M2
· S∗j +

M − 1

M2
pj [Since vj ≤ 1

2pj]

≤ 2M

M2
· S∗j +

(
M − 1

M2
+ 1

)
· pj

2) High-demand Jobs: We now shift our attention to
high-demand jobs. We can assume w.l.o.g. that the optimal
scheduler only needs to complete high-demand jobs on the
M machines. For notational convenience, assume that high-
demand jobs 1, 2, 3, ... are ordered in non-decreasing order of
their sizes. Knowing that at most one high-demand job can
be processed at any time, we can also assume w.l.o.g. that
optimal schedule is produced by SJF.

Lemma 8. For all high-demand jobs j, we have

• Sj ≤ 1
M1

∑j−1
h=1 ph.

• For all jobs j, we have S∗j ≥ 1
M

∑j−1−(M−1)
h=1 ph.

Proof: The upper bound on Sj follows from the fact that
at most one machine gets available for scheduling job j before
time 1

M1

∑j−1
h=1 ph. The lower bound on S∗j follows since SJF

completes all jobs shorter than j but possibly other jobs being
processed on the other M − 1 machines at time S∗j .

Lemma 9. For all high demand jobs j, Cj ≤ (M−1M1
+ 1) ·C∗j

Proof:

Cj ≤ pj +
1

M1

j−1∑
h=1

ph [Lemma 8]

= pj +
1

M1

j−1−(M−1)∑
h=1

ph +

j−1∑
h=j−M+1

ph

≤ pj +

M

M1
· S∗j +

M − 1

M1
pj [Lemma 8]

≤ (
M − 1

M1
+ 1) · C∗j

In the last inequality we used the fact that C∗j = S∗j + pj .

3) Putting Pieces Together: By summing the inequalities in
Lemma 7 over all low-demand jobs, we have that HYBRID is a
(3M−1

M2
+1)-approximation for low-demand jobs. By summing

over the inequalities in Lemma 9 over all high-demand jobs,
we have that HYBRID is a (M−1M1

+1)-approximation for high-
demand jobs. We set M1 = bM−24 c+1 and M2 = b 3(M−2)4 c+
1. A simple algebra gives Theorem 3 for the multiple machines
case.

IV. CONSTANT APPROXIMATIONS BY GROUPING JOBS OF
SIMILAR SIZES

The constant approximations we gave in the previous sec-
tion try to pack jobs efficiently into machines. In particular,
in the single machine case, the algorithm uses a delicate
geometric packing. In this section, we show that even if we
only process jobs of similar sizes simultaneously, we can
still obtain constant approximations. Before we describe our
algorithm, we do the following simple preprocessing. The loss
in the approximation ratio will be factored in at the end of
analysis. Due to the space constraints, most of the proofs are
deferred to the full version of this paper.

Proposition 1. We can assume w.l.o.g. that each job size is a
power of two with a loss of factor two in the approximation
ratio.

From now on, we assume that each job size is a power
of two. We will say that job j is in class k and denote
it as j ∈ Gk if its size is 2k. Our algorithm consists of
three main steps, packing jobs into blocks, ordering blocks,
and assigning blocks to machines. The first step uses the
well-known algorithm, First-Fit for the Bin Packing problem;
for the definition of the problem and related results, see [24].

Block-Scheduling Algorithm:
1) Packing jobs into blocks: For each class k, create blocks

using the First-Fit algorithm: Consider jobs in class k
in non-decreasing order of their demands, and partition
them into groups so that the total demand of jobs in
every group does not exceed 1. Here, we create another
group only when the currently considered job cannot
fit with other jobs into the existing groups. We call the
created group as blocks, and let Bk,l denote lth block
we created for jobs in class k.

2) Ordering blocks: Let pB denote the size of block B,
which is defined as the size of any job packed into
the block. Let NB as the number of jobs in B. Define
B’s density, ηB := NB/pB . Blocks are ordered in non-
increasing order of their densities.

3) Assigning blocks to machines: We will recursively
schedule blocks as follows. In the kth step, for each
machine m from 1 to M we find a maximal set of
unscheduled blocks BA,mk of sizes at most 2k with the
highest densities such that the total size of blocks in
BA,mk does not exceed γ · 2k on each machine, where
γ := (9 + d6Me). We order blocks assigned in BA,mk in
non-increasing order of their densities.

We focus on proving the approximation guarantee since
other claims in Theorem 4 immediately follow from the
algorithm’s description. As in Section II, for the sake of
analysis, we will assume w.l.o.g. that the optimal scheduler
is allowed to compress jobs; compression can only help the
optimal scheduler. Recall that for each job j, its compressed
version j′ has demand 1 and size pjdj . However, here the
optimal scheduler can use compression in a more restrictive
way. Note that the total completion time of jobs is equal to the
sum of the total number of alive jobs over time. For each time
t, the optimal scheduler tries to minimize the number of jobs
alive at time t. That is, the optimal scheduler’s only goal is to
try to complete as many jobs as possible by time t. While the
optimal scheduler can compress jobs, it is not allowed to finish
any job with sizes more than t. We can assume w.l.o.g. that the
optimal scheduler completes those with smaller demands first
amongst jobs of an equal size. Let R∗t denote the number of
jobs this strengthened optimal scheduler (denoted as OPT) has
left at time t. The careful reader may notice that such schedules
may not be consistent across different times t. However,∫
t≥0R

∗
t clearly lower bounds the optimal total completion

time. We let Rt denote the number of jobs alive at time t
in the schedule of our algorithm, which we will refer to as A.

We show the following key lemma, which will complete the
proof of Theorem 4.

Lemma 10. For all times t ≥ 0, R2γt ≤ R∗t .

Proof of [Theorem 4]∫ ∞
t=0

Rt dt = 2γ

∫ ∞
t=0

R2γt dt ≤
∫ ∞
t=0

R∗t dt.

Knowing that the first [last, resp.] integral is A’s [OPT’s, resp.]
total completion time, and factoring in the approximation

loss stated in Proposition 1, we derive that A ia a 4γ-
approximation. �

V. EXPERIMENTAL RESULTS

A. Algorithms Implemented

We use simulation experiments to compare the performance
of priority-based algorithms. In this work, we focused on
priority-based algorithms since they seem more practical due
to the simplicity. As mentioned earlier, each priority based
algorithm can be combined with any machine assignment rule.
We consider the following category of algorithms that have
two main scheduling components:

1) Priority rule: This rule orders jobs based on certain
quantities. Jobs will be dispatched to machines in this
order.

2) Machine assignment rule: This rule decides to which
machine to dispatch each job in the ordered list.

We have several choices for priority rule as discussed in
Section I-B: Shortest Job First (SJF), Smallest Demand First
(SDF) and Smallest Volume First (SVF). Our experiments
showed that SDF had poor performance in comparison with
SJF and SVF so we discarded the related results to improve
the readability of performance comparison plots. For the
machine assignment rule, we considered two algorithms. One
is assigning the currently considered job to the machine with
the lowest workload (LW). The other is choosing the machine
where the job’s completion time is minimized (EF). In our
experiments we also considered random ordering of jobs and
random machine assignment for purpose of comparison. Hence
by coupling the three choices for the priority rule (RANDOM,
SJF, SVF) with the three choices for the machine assignment
rule (RANDOM, LW, EF), we compare 9 different algorithms
in our experiments. We call each algorithm by combining the
names of the paired rules.

B. Simulation Methodology

We developed a discrete-event simulator in Java which
consists of parallel machines with bounded capacities. In all
experiments presented here except the last experiment, the
system model consists of 50 identical machines with resource
capacity of 200 CPUs on each. Each job is described by job
size and a number for CPU requirement. We assume that
preemption is not allowed and all jobs are available at the
beginning. For simplicity, we assume that each job consists of
only one task.

C. Workloads

We assume jobs’ CPU demands are distributed uniformly
in interval [1, 100) with probability 0.75 and in interval
[100, 200] with probability 0.25. For job sizes we assumed
two distributions:

1) SYNTH1: Distributed uniformly in interval [1, 100] with
probability 0.7, in interval [300, 350] with probability
0.15, and in interval [450, 500] with probability 0.15 .

2) SYNTH2: Distributed geometrical with mean equal to
that of the uniform distribution for SYNTH1.

We also performed experiments with a real world workload
dataset from an online benchmark repository [25]. We chose
the HPC2N dataset which includes job sizes and CPU require-
ments. We ignored details like job submission times included
in SWF format [26] as we assume all jobs are available for
schedule at the beginning. We run our algorithms on a sample
of 800 jobs randomly chosen from HPC2N.

D. Experiments

In this section we evaluate the performance of priority based
algorithms on synthetic and real world datasets.

In the first set of experiments we compared the performance
of the algorithms as a function of workload size, i.e, the
number of jobs. We generated Workload sizes from 3000 to
16000 with increments of 1000s from SYNTH1 and SYNTH2.
For each workload size we generated data 10 times and
computed the average. Figure 1 plots average completion time
vs. number of jobs using the synthetic workload.

All experiments were conducted by running synthetic work-
loads on 50 machines. As plots of SJF-RANDOM, SVF-
RANDOM and SVF-LW in figure 1.a and plots of SJF-
RANDOM, SJF-LW, SVF-RANDOM and SVF-LW in fig-
ure 1.b are overlapping, we zoomed into the graph for better
illustration. The relative performance of different priority
rules are similar in both distributions. However, the plots for
SYNTH2 are more distinct and SVF-EF diverges from other
adjacent curves more rapidly as can be seen in figure 1.b.
Compatible with our theoretical findings (Theorems 1 and
3), SVF-EF demonstrates the best performance, considerably
outperforming SJF-EF. Further, SVF-EF’s superiority in per-
formance becomes more distinguished as the workload size
increases.

In second experiment we tested our algorithms on a sample
of 800 jobs randomly selected from a real-world trace HPC2N.
The comparison of average completion times is shown in
Figure 2. It can be seen in the figure that SVF-EF has the
best performance for the real-world data sets.

Fairness is another important scheduling criteria in high
performance computing systems. As we are minimizing av-
erage completion time, it could happen that larger jobs get
more benefits than smaller jobs as they contribute more to
the objective function. A common measure for fairness in
literature is stretch which measures by what factor, a job is
slowed down relative to the time it takes on an underloaded
system [27]–[29].

In the last experiment, we compare the average, maximum
and standard deviation of the different algorithms for 5000
jobs generated from SYNTH1 on 10 machines as shown in
table I. For the random ordering, we see a large range of
stretch values which is reflected in the maximum and standard
deviation values. It is observable from the table that SJF-EF
and SVF-EF have the best average and maximum stretches.
The SJF-EF performs slightly better than SVF-EF, as sorting
jobs in their order of increasing sizes is more likely to finish
shorter jobs earlier, which are more sensitive to delays. The
algorithm SVF-EF is the most preferable since it outperforms

other algorithms in average completion time while achieving
a pretty good fairness.

Number of jobs ×10 4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

0

1000

2000

3000

4000

5000

6000

7000

8000

Random-Random

Random-LW

Random-EF

SJF-Random

SJF-LW

SJF-EF

SVF-Random

SVF-LW

SVF-EF

×10 4
1.52 1.54 1.56 1.58 1.6

3140

3160

3180

3200

3220

3240

3260

3280

3300

Number of jobs ×10 4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

0

1000

2000

3000

4000

5000

6000

7000

8000

Random-Random

Random-LW

Random-EF

SJF-Random

SJF-LW

SJF-EF

SVF-Random

SVF-LW

SVF-EF

×10 4
1.42 1.44 1.46 1.48 1.5

3000

3050

3100

3150

3200

3250

3300

3350

3400

Fig. 1: Average completion time vs. number of jobs for synthetic data
set, The different trend for increase in average total completion time
is observable as number of jobs are increased from 3000 to 16000
a. Job sizes are generated from uniform distribution. b. Job sizes are
generated from geometric distribution.

×10
4

0

5

10

15

R
a
n
d
o
m

-R
a
n
d
o
m

R
a
n
d
o
m

-L
W

R
a
n
d
o
m

-E
F

S
JF

-R
a
n
d
o
m

S
JF

-L
W

S
JF

-E
F

S
V
F
-R

a
n
d
o
m

S
V
F
-L

W

S
V
F
-E

F

Fig. 2: Average completion time comparison for 800 jobs sample
from HPC2N dataset.

Method Average Max std
RANDOM-RANDOM 507.80 22011 1385.19

RANDOM-LW 503.00 21516 1371.94
RANDOM-EF 514.13 19056 1265.38
SJF-RANDOM 64.85 835 72.72

SJF-LW 61.03 1470 85.44
SJF-EF 39.82 99.86 25.49

SVF-RANDOM 83.91 2235 142.25
SVF-LW 80.83 1977 129.25
SVF-EF 40.81 131.08 33.63

TABLE I: Comparison of stretch in the algorithms, 5000 jobs are run
on 10 parallel machines

VI. CONCLUDING REMARKS

In this paper we proposed new algorithms for scheduling
jobs with varying demands on multiple machines without
interruption. For this scheduling scenario which is widely
observed in practice, we considered one of the most popular
objectives, minimizing total completion time. Our work gives
in-depth insights on the problem, and develops heuristics
with provable approximation guarantees. In particular, we
analyzed a simple thus scalable algorithm, Smallest Volume
First (SVF) and showed why it outperforms other algorithms,
which is verified by our experiments. We also gave constant
approximations for the first time. We believe that our work is
only a starting point for many interesting future directions.
A more general assumption can be considered by taking
into account different types of resources. Such heterogeneous
resources can be modelled by demand and supply vectors
over multiple resources such as CPU and memory. Further,
machines may have different amounts of resources. Also it
would be interesting to consider the case where each job has
a demand that changes over time.

ACKNOWLEDGEMENTS

S. Im was supported in part by NSF Award CCF-1008065.

REFERENCES

[1] “http://www.vmware.com/consolidation/overview/.”
[2] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual

machines for managing sla violations,” in Integrated Network Manage-
ment, 2007. IM’07. 10th IFIP/IEEE International Symposium on. IEEE,
2007, pp. 119–128.

[3] “http://aws.amazon.com/ec2/.”
[4] “http://www.windowsazure.com/.”
[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[6] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das, “Towards
characterizing cloud backend workloads: insights from google compute
clusters,” ACM SIGMETRICS Performance Evaluation Review, vol. 37,
no. 4, pp. 34–41, 2010.

[7] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das, “Modeling and synthesizing task placement constraints in google
compute clusters,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011, p. 3.

[8] Q. Zhang, J. L. Hellerstein, and R. Boutaba, “Characterizing task usage
shapes in googles compute clusters,” in Large Scale Distributed Systems
and Middleware Workshop (LADIS11), 2011.

[9] K. Fox and M. Korupolu, “Weighted flowtime on capacitated machines,”
in ACM-SIAM SODA. SIAM, 2013, pp. 129–143.

[10] W. E. Smith, “Various optimizers for single-stage production,” Naval
Research Logistics Quarterly, vol. 3, no. 1-2, pp. 59–66, 1956.

[11] K. Jansen and G. Zhang, “Maximizing the total profit of rectangles
packed into a rectangle,” Algorithmica, vol. 47, no. 3, pp. 323–342,
2007.

[12] A. Steinberg, “A strip-packing algorithm with absolute performance
bound 2,” SIAM Journal on Computing, vol. 26, no. 2, pp. 401–409,
1997.

[13] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, “A
unified approach to approximating resource allocation and scheduling,”
Journal of the ACM (JACM), vol. 48, no. 5, pp. 1069–1090, 2001.

[14] S. Albagli-Kim, H. Shachnai, and T. Tamir, “Scheduling jobs with dwin-
dling resource requirements in clouds,” in INFOCOM, 2014 Proceedings
IEEE. IEEE, 2014, pp. 601–609.

[15] N. Bansal, H.-L. Chan, R. Khandekar, K. Pruhs, B. Schicber, and
C. Stein, “Non-preemptive min-sum scheduling with resource augmen-
tation,” in IEEE FOCS. IEEE, 2007, pp. 614–624.

[16] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” Networking, IEEE/ACM Transactions on, vol. 22, no. 6, pp.
1938–1951, 2014.

[17] S. T. Maguluri, R. Srikant, and L. Ying, “Heavy traffic optimal resource
allocation algorithms for cloud computing clusters,” Performance Eval-
uation, vol. 81, pp. 20–39, 2014.

[18] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng, “Non-clairvoyant
multiprocessor scheduling of jobs with changing execution characteris-
tics,” J. Scheduling, vol. 6, no. 3, pp. 231–250, 2003.

[19] J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, and
J. Weglarz, “Preemptable malleable task scheduling problem,” IEEE
Trans. Computers, vol. 55, no. 4, pp. 486–490, 2006.

[20] P. Sanders and J. Speck, “Energy efficient frequency scaling and
scheduling for malleable tasks,” in Euro-Par 2012 Parallel Processing -
18th International Conference, Euro-Par 2012, Rhodes Island, Greece,
August 27-31, 2012. Proceedings, 2012, pp. 167–178.

[21] H. Chang, M. Kodialam, R. R. Kompella, T. Lakshman, M. Lee,
and S. Mukherjee, “Scheduling in mapreduce-like systems for fast
completion time,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011,
pp. 3074–3082.

[22] Y. Zheng, N. B. Shroff, and P. Sinha, “A new analytical technique for
designing provably efficient mapreduce schedulers,” in INFOCOM, 2013
Proceedings IEEE. IEEE, 2013, pp. 1600–1608.

[23] M. L. Pinedo, Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2012.

[24] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge University Press, 2011. [Online].
Available: http://www.cambridge.org/de/knowledge/isbn/item5759340/
?site locale=de DE

[25] “Parallel workloads archive,” http://cs.huji.ac.il/labs/parallel/workloads,
note = accessed: 2015-07-01.

[26] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967–2982, 2014.

[27] M. Stillwell, F. Vivien, and H. Casanova, “Dynamic fractional resource
scheduling for hpc workloads,” in Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. IEEE, 2010, pp.
1–12.

[28] M. A. Bender, S. Muthukrishnan, and R. Rajaraman, “Approximation
algorithms for average stretch scheduling,” Journal of Scheduling, vol. 7,
no. 3, pp. 195–222, 2004.

[29] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Char-
acterization of backfilling strategies for parallel job scheduling,” in
Parallel Processing Workshops, 2002. Proceedings. International Con-
ference on. IEEE, 2002, pp. 514–519.

APPENDIX

A. Lower bounds for Simple Priority Based Algorithms

This section is devoted to prove Theorem 1. We assume
throughout this section that there is only a single machine.
We note that the lower bounds for SJF and SDF hold even if
jobs have demands less than any fixed constant.

a) Lower Bound for SJF: Consider the following in-
stance. There are two types of jobs. Type-A jobs have demands
1/2 and sizes 1. Type-B jobs have demands 1

2N and sizes 1+ε

where ε > 0 is an arbitrarily small parameter. There are
√
N

type-A jobs, and the other N −
√
N jobs are type-B.

The algorithm SJF will first complete Type-A jobs by
time

√
N/2. Since no type-B jobs get processed before

time
√
N/2, the total completion time by SJF is at least

(N −
√
N) ·

√
N/2 = Ω(N1.5). On the other hand, we can

complete all Type-B jobs by time 1, and all Type-A jobs by
time (

√
N)/2 + 1. Hence the optimal total completion time is

at most (N −
√
N) · 1 +

√
N · ((

√
N)/2 + 1) = O(N), which

gives a gap of Ω(
√
N).

b) Lower Bound for SDF: The lower bound instance is
as follows. As before there are two types of jobs. The unique
Type-A job has demand (1− ε) and size N where ε > 0 is a
parameter that is arbitrarily small. Type-B jobs have demands
1 and size 1/N . All the N jobs are type-B except the unique
Type-A job. The algorithm SDF processes no type-B jobs until
time N , hence has total completion time at least N(N − 1).
However, we can complete all type-B jobs by time 1 and the
type-A job by time N+1, hence the optimal total completion
time is at most (N − 1) · 1 + 1 · (N + 1) = 2N . Hence we
obtain a gap of Ω(N).

c) Lower Bound for SVF: Again, there are two types of
jobs. The unique Type-A jobs has size N and demand 1

2N2 .
All the other N − 1 jobs are Type-B and they have size 1/N
and demand 1. The algorithm SVF starts processing the type-A
jobs. Note that type-B jobs cannot be processed until the job-A
completes since they require the full capacity to get processed.
Hence SVF has total completion time at least N(N − 1). In
contrast, the optimal total completion time is at most 2N since
we can complete type-B jobs by time 1 and the type-B job by
time N + 1, which implies a gap of Ω(N).

