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Abstract—Software Defined Networking (SDN) is increasingly
being used in data centers as well as enterprise networks. In
an environment that has strict compliance requirements, such
as HIPAA compliance, a critical role for an SDN controller
is to route all data packets while considering data privacy-
preservation and compliance-preservation. In this paper, we
address this problem by proposing a routing protocol for SDN
which is an efficient risk-based swarm routing protocol. The
programmable capability of controllers is exploited in order to
minimize privacy and compliance risks in data transmission.
The proposed routing protocol is based on the Ant Colony
Optimization technique and machine learning, while the data for
learning is obtained from OVSDB and the OpenvSwitch Database
management protocol. We collect a history of packet transfers for
training purposes and learn from the training data to efficiently
and intelligently route sensitive data packets while it preserves
the target compliance. This routing is obtained by intelligent
eviction of rules that are downloaded to the switches. We have
implemented the proposed schemes based on an RYU controller.

Index Terms—SDN; cloud computing; privacy; security; rout-
ing; compliance-preservation.

I. INTRODUCTION

Software-Defined Networking (SDN) [1], [2], [3], [4] is a
networking approach that simplifies and optimizes network
operations.

Existing work on SDN routing has not addressed the prob-
lem of data transmission in the presence of privacy and com-
pliance requirements. Another privacy requirement that needs
to be considered in this context is that only a static or specific
routing path (a sequence of switches) should not be used
transfer high density of packets carrying sensitive data, since it
poses a risk of Denial of Service attacks as well as inference
attacks. Such a scheme, if used for controlled environment
such as HIPAA, could lead to a potential information leakage
when attacked.

In this paper, we address data privacy and compliance
restriction challenges for transferring sensitive data in SDN
environment that preserves privacy and adheres to the target
compliance, such as HIPAA. We achieve our goals that by
using: i) distributed routing optimization by employing a
swarm routing algorithm; ii) definition of privacy, risk and
techniques to compute such risks on an SDN network using

analytics and machine learning; iii) minimization of risk and
route-randomization in order achieve privacy and compliance
requirements. The contribution of this work is a novel ap-
proach to route privacy-sensitive and compliance-sensitive data
in an SDN environment. This is achieved by reducing a notion
of privacy risks and using swarm-based (ant) routing [5],
[6], [7]. The privacy risk is dynamically computed over the
network node graph and is thus holistic in nature.

We perform route-randomization by monitoring the amount
of packets transmitted on the forwarding path with help of
openflow protocol and utilites such as ovs-vsctl (a utility
for querying and configuring ovs-vswitchd) and ovs-ofctl (to
administer OpenFlow switches) [8]. Once we have counter
metrics, we define risk as a function of number of packets
transferred on the same datapath. This number would be cal-
culated by an agglomeration of offline log monitoring models
in python sci-kit learn. Monitoring models in this fashion
would provide features to an algorithm based on probabilisitic
graphical models (which is Ant Colony Optimization in our
case, explained in Section IV) for traffic spreading across other
nodes to minimize risk.

The organization of the paper is as follows. Section II
discusses relevant existing work in this domain and related to
our research problem statement. Section III then formalizes the
problem that our work intends to provide a solution to. Section
IV and Section V describe the details related to the proposed
solution. Finally, Section VI evaluates the proposed method
on varied associated parameters and Section VII concludes
our work with closing remarks and scope for future work and
any open questions.

II. RELATED WORK

The concept of privacy preservation routing is important
when dealing with sensitive data [9], [10]. The former cited
work discusses an attempt to discover the patterns by which
a controller installs a flow, and thereby learn from request for
a custom installation. This is done from the point of view of
an adversary. The latter preserves privacy by using private-
key based encryption for each data packet. Neither, however,
consider compliance-based networking which is explored in
this study.



The congestion control use case of Ant Colony Optimization
(ACO) is implemented in [5], [6], [7]. Our work extends
this idea by combining the relatively low time-complexity
with respect to traditional shortest path problem which is
traditionally NP-hard. We use an ant-based approximation
solution with privacy and compliance constraints.

III. PROBLEM DEFINITION

Our work focuses on two types of risks to the network
traffic. They are as follows.

A. Privacy Exposure

Consider a scenario where the flow of packets through the
network uses a fixed route or set of routes, for a given source
(s) and destination (d). The switches along those routes may
then identify the presence of communication between s and
d. Depending on the intelligence capabilities of the switches,
they may then be able to learn or gather sensitive information
about the data being transmitted. This results in a leakage of
privacy for that communication session.

B. Compliance

To discuss compliance risk, consider a setting where a
network topology has grown over time. When planning of
changes in network topology, this translates to varied hardware
components gathered over time. As a result, there may only be
a subset of those components that are capable of adhering to a
certain role or requirement. For our problem, this means that
a subset of switches (and/or controllers) used by the network
may be compliant to process data transferred in regulated
environment. It therefore becomes a mandate, then, that any
data traveling across the network that requires compliance, be
constrained to such a selected subset of network components.
This may also be considered for a given (s, d) pair, in which
case all routes connecting those components must be checked.
In other words, network components or routes that do not
comply with compliance requirement will pose a greater risk
when catering to HIPAA sensitive data. This is not a favorable
situation for our problem setting.

IV. PROPOSED PRIVACY AND COMPLIANCE-PRESERVING
ROUTING TECHNIQUE

A critical role for an SDN controller is to route data packets
by privacy-preserving of all data packets. The proposed routing
protocol collects a history of data packets for training purposes
and it uses the training data to efficiently and intelligently route
data packets. The key role of our swarm intelligence routing
protocol is to allow for a small amount (less than traditional
networking algorithms because of being a distributed intelli-
gence approach rather than a centralized one) of processing
(computation by the network component with respect to time
complexity) per data packet. In the future, this can be extended
to pushing computation to intelligent switches to share the
load of the controller. In order to preserve the users data
privacy in our proposed SDN routing protocol, we propose
a light-weight data privacy method that allows the protocol

efficiently use meta-data of data packets in the training data
set to intelligently route the packets.

In this section, we show how our proposed routing protocol
preserves the users’ data privacy and discuss the various
components involved in the proposed solution.

A. Privacy Exposure

In order to preserve privacy packets should be sent across
multiple paths. Instead of having a fixed route or set of
routes that are used for communication, data packets may
be sent probabilistically along paths in a network. While
a convergence mechanism may be used to ensure a bound
to communication time, the intermittent passage of packets
through any given switch will significantly reduce the risk of
privacy exposure.

B. Compliance

In order to determine low-risk routes for sending sensi-
tive information, the SDN controller could determine which
network components are compliant. A path computation then
involving those components could be formulated. This results
in minimal risk when handling sensitive data sent across the
network. An upper bound (limit) to such routing may also be
considered.

V. RISK ANALYSIS

Risk computation provides quantify risks across various
network components. This quantification can then be used to
make an optimal decision for the routing of sensitive traffic.
The following are the key factors in computation and usage
of risk quantification.
1. Risk for each router may be considered as categorized based
on the discussion in Section III. This results in two types
of risks: (i) privacy exposure risk and (ii) compliance risk.
The privacy exposure risk may be quantified by evaluating the
security of a router and its vulnerability to external attacks.
The compliance risk for a network may be quantified by
evaluating the number of controls that are not implemented
in that network component.For instance the total number of
HIPAA controls is 59, this value could be scaled by 59 to
result in a value in the range (0, 1).
2. The overall (global) risk for a graph or subgraph of network
components, may then be computed and quantified by focusing
on the maximum flow of compliant route or node and low
privacy exposure data across the network.

Given a graph G(V,E), where V and E are the sets of
vertices and edges respectively (for that graph), the controller
output after processing (as explained above) will be as follows.
The controller may take one of two possible decisions.
1. This is the case where the controller has found a path or a
set of paths across the network, by which sensitive data may
be routed. The paths are selected so as to minimize privacy
exposure and compliance risks for a given data transmission
session.
2. On computation of the risks along various paths in the
network, the controller may not find any favorable path on



which data may be transmitted without significant risk in
context of privacy exposure and compliance. In this case,
the controller acknowledges that the data transmission risk
is too high and may decide to not send any sensitive data
across the network. No data transmission session is initiated
in this setting. This situation can be resolved when more low-
risk resources become available at a later time, or if the risk
quantification of network components changes.

In order to administer the algorithm on the network across
various connected components, the following are steps that
can be followed for continuous monitoring and operation.
1. Each SDN controller (C) is allowed to focus on an
associated graph G(V,E). This graph may change from time
to time based on change in network structure, addition or
removal of various network components, or even variations
in network traffic and security.
2. In order to mark a certain data transmission for a low-risk
requirement, the (s, d) pair may be tagged or the data packets
involved may be tagged. This is a way for the controller to
ensure that all other network components are able to identify
that these data packets must adhere to a low-risk environment.
3. Ant Colony Optimization (ACO) provides a computation-
ally cheap solution to path computations (since it uses approxi-
mation) for a given network. The controller may leverage ACO
to compute optimized routes which adhere to privacy exposure
and compliance constraints associated with the current data
transmission. This may be specific to a packet or may be for
a given (s, d) pair.

The primitive ACO algorithm only uses pheromones. For
our problem setting, we also incorporate security risks for
each edge of the graph. These risks may be accumulated
over neighbors of several hops along a path in the network.
This may also be extended to previous paths used by the
network. Similar to pheromone values, quantified risk values
also observe a gradual decay in value as time progresses.
This allows the use of different paths for a given data flow
in the network(which is a favorable feature in risk-associated
environments).

In this study, we consider several parameters for analyzing
the risk of routing of a data packet. The final output of risk
analysis, risk ratio, allows the SDN controller to reconfigure
the forwarding table on each switch. In order to avoid the com-
putation overhead, we perform off-line computation, therefore
the forwarding table is updated periodically.

A. Risk Parameters

First, we define several parameters for computing risk ratio
as follows.
1. Meta-data of a data packet when it is routed to a switch and
transferred to a destination address. This parameter including
origin address, destination address, size of data packet, prior-
ity, in port, out port, and routing path.
2. Timestamp with respect to local timezone of the node
or switch. This parameter associates to three nodes at each
routing step: i) origin local time; ii) destination local time; iii)
current switch local time. The time allows us to assess each

data packet or a group of data packets based on the average
rate for different times.
3. History of routing path for a specific origin and destination
node. This parameter uses a time-stamp parameter to provide
a comprehensive evaluation.
4. Data packet content. We randomly evaluate data packet
if there is a chance of plain text data transfers through the
network which might be performed by software application
which is compliance unaware. Evaluation of data packet
enables the risk analyzer to assess high risk applications that
are not encrypting original data.
5. Type of data packet. This may correspond to different
protocols, such as ARP, IP4, and IP6.
6. Data Integrity. We assess a data packet by reviewing
minimum of two switches in a routing path. Data packets are
randomly selected for data integrity evaluation. At the same
time, the data packet may be forwarded to the destination and a
copy could be submitted to Integrity Evaluator SDN controller
that has all required information for additional review.
7. Type of data packet encryption. Packets may have different
levels of security provided by different types of encryption.

B. Risk Computation

Second, we consider ACO to analyze online risk ratio
and use a well-known clustering algorithm, k − means, to
iteratively compute k centroid objects for our n criteria to
find the risk ratio based on described parameters in Section
V-A. Since this algorithm has more computation overhead than
ACO, it is processed on the SDN controller in an off-line
mode or it can be processed on an individual node and it
modifies forwarding tables of the switches based on computed
risk factors.

In the k − means algorithm, let X = {x1, x2, ..., xn} be
n elements of risk parameter objects, and S = {s1, s2, ..., sn}
which is the set of our risk level clusters. The goal is clustering
n parameters into S clusters of risk ratios.

The algorithm aims to partition n parameters into k clusters
based on minimizing the Within-Cluster Sum of Squares
(WCSS) which is a summation of distance function of each
risk parameters to the risk level clusters. The WCSS for each
si can be defined as follows:∑

x∈Si

||x− µ||2 (1)

If µ be the mean of cluster of si, therefore the risk ratio can
be defined as follows:

arg min

k∑
i=1

∑
x∈Si

||x− µ||2 (2)

This algorithm has to perform two steps.
1) Assign each point to the closest cluster to generate a

partition as follows:

s
(t)
i = {xp : ||xp−m(t)

i ||
2 ≤ ||xp−m(t)

j ||
2,∀j = 1, 2, ..., k

(3)
m

(t)
i represents the mean value of ith cluster



2) Compute the centroid of the new cluster as follows:

m
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (4)

In this paper, we consider five risk levels as follows:
i) very low-risk; ii) low-risk; iii) normal; iv) high-risk; v)
very high-risk. These risk levels correspond to cluster centers
{s1, s2, s3, s4, s5}, respectively. In this scenario the target of
our algorithm is finding a lower risk ratio for each route to
distributing data packets in SDN environment.

VI. EVALUATION

We implement the risk analyzer in python by using scikit-
learn library. We use 10 different features or data privacy
parameters as input for analyzing the risk ratio with 5 dif-
ferent risk levels as described in Section V-A. Each feature
represents a risk parameter to be used in the k − means
algorithm.we have implemented our log analysis model is an
offline simulation process (using RYU), which however, can
be implemented for online log analysis and risk computation.
In this experiment, we considered 10, 000 sample log records
which are generated randomly as follows.
1. Using an anisotropic distribution for 10 different features
when we consider different time-stamp features. We transform
the original feature of the time-stamp to the cluster-distance
space. Let us consider different timestamps as the main key for
this classification algorithm while using the other 9 features as
parameters. In this scenario, we can divide each day into three
periods as follows: 8:00AM-4:00PM, 4:00PM-1:00AM and
1:00AM-8:00AM. Therefore, we can evaluate all 9 features
with respect to this time division. The result of this experiment
is shown in Figure 1. Each record of 10, 000 sample records
have been labeled with its risk ratio level. In Figure 1, we
reduce the 10-dimension input to a 2D as shown points as
X-axis and Y-axis. We also label each of the points based
on their risk ratio with different colors when 10 features are
considered. In this experiment, we found that any security and
privacy issue between 4:00PM-1:00AM (the middle cluster
represents this set of time-stamps) indicates a very high-risk
factor. For instance, when a health-care application is using
plain-text without encrypting the original content and using a
plain-text protocol.
2. Using different variance for generating random values for 10
different features is shown Figure 2, the risk level for different
cluster have been identified for all 10, 000 records; and finally
3. Using unevenly sized blocks to generate random values for
10 different features. As shown in Figure 3, the risk levels for
different clusters have been identified for all 10, 000 records.

Considering different subjects for evaluating the risk in
a SDN network allows the proposed method to provide a
rigorous evaluation for strict compliance requirement network.
In addition, implementing this method on each switch even for
open switch is not feasible because the method requires heavy
computation. However, when we are using a SDN controller
we are able to collect data periodically from the switches and

Fig. 1. Risk level for anisotropic distribution of 10 features. Multidimensional
feature vectors are reduced to two dimensions.

Fig. 2. Risk level for different variances of 10 features. Clusters of risk varied
level data are observed to be well separated in this representation.

compute the risk factors for different data packets based on
their origin, destination, time, and etc. The collected data can
be reviewed by an external reviewer (risk analyzer) to decide
which forwarding table is required modification. Our ACO
method will be able to use this risk level tag to evaluate
network edge weights and therefore forward data packets
based on all considered risk parameters.

ACO is tested by evaluating the time durations of a series
of random message interactions between hosts. This involves
rule computation for new communications, as well as a hard
timeout (time after which any rule is forcefully erased, if
not erased already) by the controller. These are summarized
in Figure 4. Experimental results are averaged over 10 runs.
With the addition of risk and privacy constraints, the routing
path selected may no longer be the shortest (because routing



Fig. 3. Risk level for different 10 features when using unevenly sized blocks.
Some overlap in clusters data items across risk levels is observed when
analyzing all features.

preferences no longer depend solely on physical network
distance).While an interaction with the controller (when a flow
is not installed) takes significantly longer than bypassing it
(when a flow is installed), the use of ACO still allows for lower
complexity than other traditional algorithms (as explained in
Section II). The time complexity for the controller can further
be reduced by decreasing the amount of information being
logged or retained, and optimizing the implementation. ACO
is an inherently parallel algorithm and may therefore take
advantage of parallel compute architectures.

VII. CONCLUSION

In this paper, we proposed a novel data privacy preservation
method for SDN routing. In this routing algorithm, the SDN
controller collects different features, such as: data packet
types, network topology, and data packet routing history. We
used two methods, first, risk analyzer that provides an offline
process to compute the risk ratio and the second, an online
method to make real-time decision for routing data packets.
First, the SDN controller processes the data packet features
by evaluating them based on a well-known machine learning
method, k−means, and it classifies the data packet based on
their level of risks according to HIPPA risk parameters. Sec-
ond, we used ACO to provide a real-time decision for routing
data packets because it provides a much lower time complexity
solution than its traditional graph algorithm counterparts. The
experimental results show an evaluation on 10 different risk
parameters which is considered as high dimensional data. The
risk analyzer is combined with ACO to provide a holistic
solution to privacy and risk compliant associate to the whole
SDN network.
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